| Hauptseite > Publikationsdatenbank > Viscoelastic polyborosiloxanes as artificial solid electrolyte interphase on lithium metal anodes > print |
| 001 | 892834 | ||
| 005 | 20240709082216.0 | ||
| 024 | 7 | _ | |a 10.1016/j.electacta.2021.138526 |2 doi |
| 024 | 7 | _ | |a 2128/29147 |2 Handle |
| 024 | 7 | _ | |a altmetric:106494530 |2 altmetric |
| 024 | 7 | _ | |a WOS:000661937600003 |2 WOS |
| 037 | _ | _ | |a FZJ-2021-02374 |
| 082 | _ | _ | |a 540 |
| 100 | 1 | _ | |a Lennartz, Peter |0 P:(DE-Juel1)164855 |b 0 |u fzj |
| 245 | _ | _ | |a Viscoelastic polyborosiloxanes as artificial solid electrolyte interphase on lithium metal anodes |
| 260 | _ | _ | |a New York, NY [u.a.] |c 2021 |b Elsevier |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1637846578_10843 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Lithium metal is considered as outstanding anode material due to its superior specific capacity and high redox potential, despite that non-uniform lithium deposition and dissolution upon charging and discharging yields formation of reactive high surface area lithium (HSAL) and a brittle, inhomogeneous solid electrolyte interphase (SEI). As counterstrategy, artificial SEIs such as protective polymer layers can be designed to control lithium deposition. Herein, viscoelastic polyborosiloxanes (PBS) with varying degree of cross-linking (maximum storage modulus of 0.4 MPa) are synthesized and coated on lithium metal. Operando 7Li nuclear magnetic resonance spectroscopy illustrates that highly cross-linked PBS facilitates homogenous deposit morphologies, whereas merely cross-linked PBS does not show relevant effects compared to uncoated electrodes. Interphase analysis (impedance spectroscopy and distribution of relaxation times analysis) reveals increased interphase resistances for coated Li electrodes due to limited solvent uptake and provides a more detailed evaluation of resistive contributions from interphases compared to common equivalent circuit modeling. The beneficial effects of highly cross-linked PBS come at expense of higher resistance associated with a lower degree of swelling, hence emphasizing the complexity of Li deposition. |
| 536 | _ | _ | |a 122 - Elektrochemische Energiespeicherung (POF4-122) |0 G:(DE-HGF)POF4-122 |c POF4-122 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Borzutzki, Kristina Kerstin |0 P:(DE-Juel1)171270 |b 1 |u fzj |
| 700 | 1 | _ | |a Winter, Martin |0 P:(DE-Juel1)166130 |b 2 |u fzj |
| 700 | 1 | _ | |a Brunklaus, Gunther |0 P:(DE-Juel1)172047 |b 3 |e Corresponding author |u fzj |
| 773 | _ | _ | |a 10.1016/j.electacta.2021.138526 |g Vol. 388, p. 138526 - |0 PERI:(DE-600)1483548-4 |p 138526 |t Electrochimica acta |v 388 |y 2021 |x 0013-4686 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/892834/files/Viscoelastic.pdf |y Published on 2021-05-14. Available in OpenAccess from 2023-05-14. |
| 909 | C | O | |o oai:juser.fz-juelich.de:892834 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)164855 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)171270 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)166130 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)172047 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |x 0 |
| 913 | 0 | _ | |a DE-HGF |b Energie |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-131 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Electrochemical Storage |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-30 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-30 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-30 |
| 915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
| 915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ELECTROCHIM ACTA : 2019 |d 2021-01-30 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ELECTROCHIM ACTA : 2019 |d 2021-01-30 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-30 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-30 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-30 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-30 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-30 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-01-30 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-30 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-12-20141217 |k IEK-12 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 0 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-12-20141217 |
| 981 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|