001     892834
005     20240709082216.0
024 7 _ |a 10.1016/j.electacta.2021.138526
|2 doi
024 7 _ |a 2128/29147
|2 Handle
024 7 _ |a altmetric:106494530
|2 altmetric
024 7 _ |a WOS:000661937600003
|2 WOS
037 _ _ |a FZJ-2021-02374
082 _ _ |a 540
100 1 _ |a Lennartz, Peter
|0 P:(DE-Juel1)164855
|b 0
|u fzj
245 _ _ |a Viscoelastic polyborosiloxanes as artificial solid electrolyte interphase on lithium metal anodes
260 _ _ |a New York, NY [u.a.]
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1637846578_10843
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Lithium metal is considered as outstanding anode material due to its superior specific capacity and high redox potential, despite that non-uniform lithium deposition and dissolution upon charging and discharging yields formation of reactive high surface area lithium (HSAL) and a brittle, inhomogeneous solid electrolyte interphase (SEI). As counterstrategy, artificial SEIs such as protective polymer layers can be designed to control lithium deposition. Herein, viscoelastic polyborosiloxanes (PBS) with varying degree of cross-linking (maximum storage modulus of 0.4 MPa) are synthesized and coated on lithium metal. Operando 7Li nuclear magnetic resonance spectroscopy illustrates that highly cross-linked PBS facilitates homogenous deposit morphologies, whereas merely cross-linked PBS does not show relevant effects compared to uncoated electrodes. Interphase analysis (impedance spectroscopy and distribution of relaxation times analysis) reveals increased interphase resistances for coated Li electrodes due to limited solvent uptake and provides a more detailed evaluation of resistive contributions from interphases compared to common equivalent circuit modeling. The beneficial effects of highly cross-linked PBS come at expense of higher resistance associated with a lower degree of swelling, hence emphasizing the complexity of Li deposition.
536 _ _ |a 122 - Elektrochemische Energiespeicherung (POF4-122)
|0 G:(DE-HGF)POF4-122
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Borzutzki, Kristina Kerstin
|0 P:(DE-Juel1)171270
|b 1
|u fzj
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 2
|u fzj
700 1 _ |a Brunklaus, Gunther
|0 P:(DE-Juel1)172047
|b 3
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.electacta.2021.138526
|g Vol. 388, p. 138526 -
|0 PERI:(DE-600)1483548-4
|p 138526
|t Electrochimica acta
|v 388
|y 2021
|x 0013-4686
856 4 _ |u https://juser.fz-juelich.de/record/892834/files/Viscoelastic.pdf
|y Published on 2021-05-14. Available in OpenAccess from 2023-05-14.
909 C O |o oai:juser.fz-juelich.de:892834
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)164855
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171270
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172047
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|x 0
913 0 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Electrochemical Storage
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-30
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELECTROCHIM ACTA : 2019
|d 2021-01-30
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ELECTROCHIM ACTA : 2019
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21