000892875 001__ 892875
000892875 005__ 20240712100919.0
000892875 0247_ $$2doi$$a10.5194/acp-21-8213-2021
000892875 0247_ $$2ISSN$$a1680-7316
000892875 0247_ $$2ISSN$$a1680-7324
000892875 0247_ $$2Handle$$a2128/27871
000892875 0247_ $$2altmetric$$aaltmetric:106500408
000892875 0247_ $$2WOS$$aWOS:000657177200005
000892875 037__ $$aFZJ-2021-02414
000892875 082__ $$a550
000892875 1001_ $$0P:(DE-HGF)0$$aWetzel, Gerald$$b0$$eCorresponding author
000892875 245__ $$aPollution trace gases C<sub>2</sub>H<sub>6</sub>, C<sub>2</sub>H<sub>2</sub>, HCOOH, and PAN in the North Atlantic UTLS: observations and simulations
000892875 260__ $$aKatlenburg-Lindau$$bEGU$$c2021
000892875 3367_ $$2DRIVER$$aarticle
000892875 3367_ $$2DataCite$$aOutput Types/Journal article
000892875 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1669887838_20109
000892875 3367_ $$2BibTeX$$aARTICLE
000892875 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892875 3367_ $$00$$2EndNote$$aJournal Article
000892875 520__ $$aMeasurements of the pollution trace gases ethane (C2H6), ethyne (C2H2), formic acid (HCOOH), and peroxyacetyl nitrate (PAN) were performed in the North Atlantic upper troposphere and lowermost stratosphere (UTLS) region with the airborne limb imager GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) with high spatial resolution down to cloud top. Observations were made during flights with the German research aircraft HALO (High Altitude and LOng Range Research Aircraft) in the frame of the WISE (Wave-driven ISentropic Exchange) campaign, which was carried out in autumn 2017 from Shannon (Ireland) and Oberpfaffenhofen (Germany). Enhanced volume mixing ratios (VMRs) of up to 2.2 ppbv C2H6, 0.2 ppbv C2H2, 0.9 ppbv HCOOH, and 0.4 ppbv PAN were detected during the flight on 13 September 2017 in the upper troposphere and around the tropopause above the British Isles. Elevated quantities of PAN were measured even in the lowermost stratosphere (locally up to 14 km), likely reflecting the fact that this molecule has the longest lifetime of the four species discussed herein. Backward trajectory calculations as well as global three-dimensional Chemical Lagrangian Model of the Stratosphere (CLaMS) simulations with artificial tracers of air mass origin have shown that the main sources of the observed pollutant species are forest fires in North America and anthropogenic pollution in South Asia and Southeast Asia uplifted and moved within the Asian monsoon anticyclone (AMA) circulation system. After release from the AMA, these species or their precursor substances are transported by strong tropospheric winds over large distances, depending on their particular atmospheric lifetime of up to months. Observations are compared to simulations with the atmospheric models EMAC (ECHAM5/MESSy Atmospheric Chemistry) and CAMS (Copernicus Atmosphere Monitoring Service). These models are qualitatively able to reproduce the measured VMR enhancements but underestimate the absolute amount of the increase. Increasing the emissions in EMAC by a factor of 2 reduces the disagreement between simulated and measured results and illustrates the importance of the quality of emission databases used in chemical models.
000892875 536__ $$0G:(DE-HGF)POF4-211$$a211 - Die Atmosphäre im globalen Wandel (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000892875 536__ $$0G:(DE-HGF)POF4-2A3$$a2A3 - Remote Sensing  (CARF - CCA) (POF4-2A3)$$cPOF4-2A3$$fPOF IV$$x1
000892875 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892875 7001_ $$00000-0003-2016-2800$$aFriedl-Vallon, Felix$$b1
000892875 7001_ $$0P:(DE-HGF)0$$aGlatthor, Norbert$$b2
000892875 7001_ $$0P:(DE-Juel1)129122$$aGrooß, Jens-Uwe$$b3
000892875 7001_ $$0P:(DE-HGF)0$$aGulde, Thomas$$b4
000892875 7001_ $$00000-0002-4174-9531$$aHöpfner, Michael$$b5
000892875 7001_ $$00000-0002-9642-1955$$aJohansson, Sören$$b6
000892875 7001_ $$00000-0002-0261-7253$$aKhosrawi, Farahnaz$$b7
000892875 7001_ $$0P:(DE-HGF)0$$aKirner, Oliver$$b8
000892875 7001_ $$0P:(DE-HGF)0$$aKleinert, Anne$$b9
000892875 7001_ $$00000-0001-8923-5516$$aKretschmer, Erik$$b10
000892875 7001_ $$0P:(DE-HGF)0$$aMaucher, Guido$$b11
000892875 7001_ $$0P:(DE-HGF)0$$aNordmeyer, Hans$$b12
000892875 7001_ $$0P:(DE-HGF)0$$aOelhaf, Hermann$$b13
000892875 7001_ $$0P:(DE-HGF)0$$aOrphal, Johannes$$b14
000892875 7001_ $$0P:(DE-HGF)0$$aPiesch, Christof$$b15
000892875 7001_ $$00000-0001-9608-7320$$aSinnhuber, Björn-Martin$$b16
000892875 7001_ $$0P:(DE-Juel1)129105$$aUngermann, Jörn$$b17
000892875 7001_ $$0P:(DE-Juel1)129164$$aVogel, Bärbel$$b18
000892875 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-21-8213-2021$$gVol. 21, no. 10, p. 8213 - 8232$$n10$$p8213 - 8232$$tAtmospheric chemistry and physics$$v21$$x1680-7324$$y2021
000892875 8564_ $$uhttps://juser.fz-juelich.de/record/892875/files/acp-21-8213-2021.pdf$$yOpenAccess
000892875 909CO $$ooai:juser.fz-juelich.de:892875$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000892875 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129122$$aForschungszentrum Jülich$$b3$$kFZJ
000892875 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129105$$aForschungszentrum Jülich$$b17$$kFZJ
000892875 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129164$$aForschungszentrum Jülich$$b18$$kFZJ
000892875 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000892875 9131_ $$0G:(DE-HGF)POF4-2A3$$1G:(DE-HGF)POF4-2A0$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lCOOPERATION ACROSS RESEARCH FIELDS (CARFs)$$vRemote Sensing  (CARF - CCA)$$x1
000892875 9130_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000892875 9141_ $$y2021
000892875 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000892875 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000892875 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000892875 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000892875 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000892875 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000892875 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000892875 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000892875 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000892875 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000892875 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892875 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000892875 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000892875 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000892875 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000892875 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000892875 920__ $$lyes
000892875 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000892875 9801_ $$aFullTexts
000892875 980__ $$ajournal
000892875 980__ $$aVDB
000892875 980__ $$aI:(DE-Juel1)IEK-7-20101013
000892875 980__ $$aUNRESTRICTED
000892875 981__ $$aI:(DE-Juel1)ICE-4-20101013