000892879 001__ 892879
000892879 005__ 20240507205534.0
000892879 0247_ $$2doi$$a10.1088/2632-072X/abf090
000892879 0247_ $$2Handle$$a2128/27967
000892879 0247_ $$2WOS$$aWOS:000660852500001
000892879 037__ $$aFZJ-2021-02416
000892879 082__ $$a530
000892879 1001_ $$0P:(DE-Juel1)180311$$aWassmer, Jonas$$b0
000892879 245__ $$aTargeted suppression of failure spreading in multistable oscillator networks
000892879 260__ $$aBristol$$bIOP Publ.$$c2021
000892879 3367_ $$2DRIVER$$aarticle
000892879 3367_ $$2DataCite$$aOutput Types/Journal article
000892879 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1715085252_7023
000892879 3367_ $$2BibTeX$$aARTICLE
000892879 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892879 3367_ $$00$$2EndNote$$aJournal Article
000892879 520__ $$aFluctuations and damages crucially determine the operation and stability of networked systems across disciplines, from electrical powergrids, to vascular networks or neuronal networks. Local changes in the underlying dynamics may affect the whole network and, in the worst case, cause a total collapse of the system through a cascading failure. It has been demonstrated that certain subgraphs can reduce failure spreading drastically, or even inhibit it completely. However, this shielding effect is poorly understood for non-linear dynamical models. Here, we study the effect of perturbations in networks of oscillators coupled via the Kuramoto model. We demonstrate how the network structure can be optimised for suppressing specific, targeted fluctuations at a desiredoperational state while letting others pass. We illustrate our approach by demonstrating that a significant reduction in time-dependent fluctuations may be achieved by optimising the edge weights. Finally, we demonstrate how to apply the developed method to real-world supply networks such as power grids. Our findings reveal that a targeted shielding of specific solutions in multistable systems is possible which may be applied to make supply networks more robust.
000892879 536__ $$0G:(DE-HGF)POF4-111$$a111 - Energiesystemtransformation (POF4-111)$$cPOF4-111$$fPOF IV$$x0
000892879 536__ $$0G:(HGF)VH-NG-1025_20112014$$aVH-NG-1025 - Helmholtz Young Investigators Group "Efficiency, Emergence and Economics of future supply networks" (VH-NG-1025_20112014)$$cVH-NG-1025_20112014$$x1
000892879 536__ $$0G:(DE-JUEL1)BMBF-03EK3055B$$aCoNDyNet 2 - Kollektive Nichtlineare Dynamik Komplexer Stromnetze (BMBF-03EK3055B)$$cBMBF-03EK3055B$$x2
000892879 536__ $$0G:(DE-HGF)ES2050$$aES2050 - Energie System 2050 (ES2050)$$cES2050$$x3
000892879 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892879 7001_ $$0P:(DE-Juel1)162277$$aWitthaut, Dirk$$b1$$eCorresponding author
000892879 7001_ $$0P:(DE-Juel1)176610$$aKaiser, Franz$$b2
000892879 773__ $$0PERI:(DE-600)3034619-8$$a10.1088/2632-072X/abf090$$gVol. 2, no. 3, p. 035003 -$$n3$$p035003 -$$tJournal of physics / Complexity$$v2$$x2632-072X$$y2021
000892879 8564_ $$uhttps://juser.fz-juelich.de/record/892879/files/Wassmer_2021_J._Phys._Complex._2_035003.pdf$$yOpenAccess
000892879 909CO $$ooai:juser.fz-juelich.de:892879$$popenaire$$pdnbdelivery$$pdriver$$pVDB$$popen_access
000892879 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180311$$aForschungszentrum Jülich$$b0$$kFZJ
000892879 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162277$$aForschungszentrum Jülich$$b1$$kFZJ
000892879 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176610$$aForschungszentrum Jülich$$b2$$kFZJ
000892879 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x0
000892879 9130_ $$0G:(DE-HGF)POF3-153$$1G:(DE-HGF)POF3-150$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lTechnologie, Innovation und Gesellschaft$$vAssessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security$$x0
000892879 9141_ $$y2021
000892879 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892879 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000892879 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS-COMPLEXITY : 2022$$d2023-08-23
000892879 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
000892879 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T09:01:43Z
000892879 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T09:01:43Z
000892879 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T09:01:43Z
000892879 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2023-05-02T09:01:43Z
000892879 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
000892879 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-08-23
000892879 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
000892879 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-23
000892879 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-23
000892879 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-23
000892879 920__ $$lno
000892879 9201_ $$0I:(DE-Juel1)IEK-STE-20101013$$kIEK-STE$$lSystemforschung und Technologische Entwicklung$$x0
000892879 980__ $$ajournal
000892879 980__ $$aVDB
000892879 980__ $$aI:(DE-Juel1)IEK-STE-20101013
000892879 980__ $$aUNRESTRICTED
000892879 9801_ $$aFullTexts