001     892885
005     20210623133416.0
024 7 _ |a 10.3762/bxiv.2021.30.v1
|2 doi
024 7 _ |a 2128/27903
|2 Handle
037 _ _ |a FZJ-2021-02419
100 1 _ |a Grewal, Abhishek
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Local stiffness and work-function variations of hexagonal boron nitride on Cu(111)
260 _ _ |c 2021
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1622555402_3926
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Combined scanning tunnelling and atomic force microscopy using a qPlus sensor enables the measurement of electronic and mechanic properties of two dimensional (2D) materials at the nanoscale. In this work we study hexagonal boron nitride ( h -BN) , an atomically thin 2D layer, that is van der Waals coupled to a Cu(111) surface. The system is of interest as a decoupling layer for functional 2D heterostructures due to the preservation of the h -BN bandgap and as a template for atomic and molecular adsorbates owing to its local electronic trapping potential due to in-plane electric field. We obtain work-function (Φ) variations on the h -BN/Cu(111) superstructure in the order of 100 meV using two independent methods, namely the shift of field emission resonances (FER) and contact potential difference (CPD) measured by Kelvin probe force microscopy (KPFM). Using 3D force profiles of the same area we determine the relative stiffness of the Moir\'e region allowing us to analyze both electronic and mechanical properties of the 2D layer simultaneously. We obtain a sheet stiffness of 9.4 ± 0.9 nm which is an order of magnitude higher than the one obtained for h -BN/Rh(111).Using constant force maps we are able to derive height profiles of the h -BN/Cu(111) showing that the system has a corrugation of 0.6 ± 0.2 Å which helps demystify discussion around the flatness of the h -BN/Cu(111) substrate.
536 _ _ |a 521 - Quantum Materials (POF4-521)
|0 G:(DE-HGF)POF4-521
|c POF4-521
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wang, Yuqing
|0 P:(DE-Juel1)188349
|b 1
700 1 _ |a Münks, Matthias
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kern, Klaus
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Ternes, Markus
|0 P:(DE-Juel1)174438
|b 4
|e Corresponding author
773 _ _ |a 10.3762/bxiv.2021.30.v1
856 4 _ |u https://juser.fz-juelich.de/record/892885/files/PYYF4MKMJ2AUXW5PUAHOPX5FBY.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:892885
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)188349
910 1 _ |a MPI Solid State Research
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)188349
910 1 _ |a MPI Solid State Research
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a MPI Solid State Research
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)174438
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)174438
913 0 _ |a DE-HGF
|b Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-141
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Controlling Electron Charge-Based Phenomena
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|x 0
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Funktionale Nanostrukturen an Oberflächen
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21