000892894 001__ 892894
000892894 005__ 20210623133417.0
000892894 037__ $$aFZJ-2021-02421
000892894 041__ $$aEnglish
000892894 1001_ $$0P:(DE-Juel1)131034$$aWiegand, Simone$$b0$$eCorresponding author$$ufzj
000892894 1112_ $$a14th International Meeting on Thermodiffusion$$cNorway (virtuell)$$d2021-05-25 - 2021-05-27$$gIMT 14$$wNorway
000892894 245__ $$aThermophoresis of biological and biocompatible compounds in aqueous solution
000892894 260__ $$c2021
000892894 3367_ $$033$$2EndNote$$aConference Paper
000892894 3367_ $$2DataCite$$aOther
000892894 3367_ $$2BibTeX$$aINPROCEEDINGS
000892894 3367_ $$2DRIVER$$aconferenceObject
000892894 3367_ $$2ORCID$$aLECTURE_SPEECH
000892894 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1622472740_7876$$xInvited
000892894 520__ $$aWith rising popularity of Microscale Thermophoresis for the characterisation of protein-ligand binding reactions and possible applications in microfluidic devices, there is a growing interest in considering thermodiffusion in the context of life sciences. But although the understanding of thermodiffusion in non-polar mixtures has grown rapidly in recent years, predictions for associated mixtures like aqueous solutions remain challenging. This talk aims to give an overview of the literature on thermodiffusion in aqueous systems, show the difficulties in theoretical description that arise from the non-ideal behaviour of water-mixtures, and highlight the relevance of thermodiffusion in a biological context. We find that the thermodiffusion in aqueous systems is dominated by contributions from heat of transfer, hydrogen bond interactions and charge effects. However, the separation of these effects is often difficult, especially in case of biological systems where a systematic exclusion of contributions may not be feasible. Beside the deficiencies of the theoretical analysis, we will also elucidate the shortcomings of the available experimental methods handling the biological multicomponent systems. References Niether, D.; Wiegand, S., J. Phys. Condens. Matter, 31 (2019) 503003:1-25.
000892894 536__ $$0G:(DE-HGF)POF4-524$$a524 - Molecular and Cellular Information Processing (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000892894 909CO $$ooai:juser.fz-juelich.de:892894$$pVDB
000892894 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131034$$aForschungszentrum Jülich$$b0$$kFZJ
000892894 9130_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000892894 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000892894 9141_ $$y2021
000892894 920__ $$lyes
000892894 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
000892894 980__ $$aconf
000892894 980__ $$aVDB
000892894 980__ $$aI:(DE-Juel1)IBI-4-20200312
000892894 980__ $$aUNRESTRICTED