000892896 001__ 892896
000892896 005__ 20240725071936.0
000892896 0247_ $$2doi$$a10.1016/j.jeurceramsoc.2021.05.041
000892896 0247_ $$2ISSN$$a0955-2219
000892896 0247_ $$2ISSN$$a1873-619X
000892896 0247_ $$2WOS$$aWOS:000661435800002
000892896 037__ $$aFZJ-2021-02423
000892896 082__ $$a660
000892896 1001_ $$0P:(DE-Juel1)174298$$aIhrig, Martin$$b0$$eCorresponding author
000892896 245__ $$aLi7La3Zr2O12 solid electrolyte sintered by the ultrafast high-temperature method
000892896 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000892896 3367_ $$2DRIVER$$aarticle
000892896 3367_ $$2DataCite$$aOutput Types/Journal article
000892896 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1721884749_26965
000892896 3367_ $$2BibTeX$$aARTICLE
000892896 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892896 3367_ $$00$$2EndNote$$aJournal Article
000892896 500__ $$aDie letzte Version existiert nur in der Fomatierung des Verlages, daher kein Post Print
000892896 520__ $$aAll-solid-state Li batteries (ASSLBs) are regarded as the systems of choice for future electrochemical energy storage. Particularly, the garnet Li7La3Zr2O12 (LLZO) is one of the most promising solid electrolytes due to its stability against Li metal. However, its integration into ASSLBs is challenging due to high temperature and long dwell time required for sintering. Advanced sintering techniques, such as Ultrafast High-temperature Sintering, have shown to significantly increase the sintering rate. Direct contact to graphite heaters allows sintering of LLZO within 10 s due to extremely high heating rates (up to 104 K min−1) and temperatures up to 1500 °C to a density around 80 %. The LLZO sintered in vacuum and Ar atmosphere has good mechanical stability and high phase purity, but kinetic de-mixing at the grain boundaries was observed. Nevertheless, the Li-ion conductivity of 1 mS cm−1 at 80 °C was comparable to conventional sintering, but lower than for Field-Assisted Sintering Technique/Spark Plasma Sintering.
000892896 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000892896 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892896 7001_ $$0P:(DE-Juel1)166597$$aMishra, Tarini Prasad$$b1
000892896 7001_ $$0P:(DE-Juel1)178008$$aScheld, Walter Sebastian$$b2
000892896 7001_ $$0P:(DE-Juel1)169991$$aHäuschen, Grit$$b3
000892896 7001_ $$0P:(DE-Juel1)185039$$aRheinheimer, Wolfgang$$b4
000892896 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b5
000892896 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b6$$eCorresponding author
000892896 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b7
000892896 773__ $$0PERI:(DE-600)2013983-4$$a10.1016/j.jeurceramsoc.2021.05.041$$gp. S0955221921003794$$n12$$p6075-6079$$tJournal of the European Ceramic Society$$v41$$x0955-2219$$y2021
000892896 8564_ $$uhttps://juser.fz-juelich.de/record/892896/files/1-s2.0-S0955221921003794-main%20%281%29.pdf$$yRestricted
000892896 909CO $$ooai:juser.fz-juelich.de:892896$$pVDB
000892896 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174298$$aForschungszentrum Jülich$$b0$$kFZJ
000892896 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166597$$aForschungszentrum Jülich$$b1$$kFZJ
000892896 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178008$$aForschungszentrum Jülich$$b2$$kFZJ
000892896 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169991$$aForschungszentrum Jülich$$b3$$kFZJ
000892896 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185039$$aForschungszentrum Jülich$$b4$$kFZJ
000892896 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b5$$kFZJ
000892896 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145623$$aForschungszentrum Jülich$$b6$$kFZJ
000892896 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b7$$kFZJ
000892896 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000892896 9130_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000892896 9141_ $$y2021
000892896 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ EUR CERAM SOC : 2019$$d2021-01-27
000892896 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000892896 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000892896 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000892896 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000892896 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000892896 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000892896 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-27
000892896 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000892896 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000892896 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000892896 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000892896 920__ $$lyes
000892896 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000892896 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000892896 980__ $$ajournal
000892896 980__ $$aVDB
000892896 980__ $$aI:(DE-Juel1)IEK-1-20101013
000892896 980__ $$aI:(DE-82)080011_20140620
000892896 980__ $$aUNRESTRICTED
000892896 981__ $$aI:(DE-Juel1)IMD-2-20101013