
Detecting disaster before it strikes:
On the challenges of automated building and
testing in HPC environments

Christian Feld, Markus Geimer, Marc-André Hermanns, Pavel Saviankou,
Anke Visser, and Bernd Mohr

Abstract Software reliability is one of the cornerstones of any successful user expe-
rience. Software needs to build up the users’ trust in its fitness for a specific purpose.
Software failures undermine this trust and add to user frustration that will ultimately
lead to a termination of usage. Even beyond user expectations on the robustness of a
software package, today’s scientific software is more than a temporary research pro-
totype. It also forms the bedrock for successful scientific research in the future. A
well-defined software engineering process that includes automated builds and tests
is a key enabler for keeping software reliable in an agile scientific environment and
should be of vital interest for any scientific software development team.
While automated builds and deployment as well as systematic software testing have
become common practice when developing software in industry, it is rarely used
for scientific software, including tools. Potential reasons are that (1) in contrast to
computer scientists, domain scientists from other fields usually never get exposed to
such techniques during their training, (2) building up the necessary infrastructures is
often considered overhead that distracts from the real science, (3) interdisciplinary
research teams are still rare, and (4) high-performance computing systems and their
programming environments are less standardized, such that published recipes can
often not be applied without heavy modification.
In this work, we will present the various challenges we encountered while setting
up an automated building and testing infrastructure for the Score-P, Scalasca, and
Cube projects. We will outline our current approaches, alternatives that have been
considered, and the remaining open issues that still need to be addressed—to further
increase the software quality and thus, ultimately improve user experience.

C. Feld · M. Geimer · M.-A. Hermanns · P. Saviankou · A. Visser · B. Mohr
Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
e-mail: {c.feld,m.geimer,m.a.hermanns,p.saviankou,a.visser,b.mohr}@
fz-juelich.de

1

2 C. Feld et al.

1 Introduction

Software reliability is one of the cornerstones of any successful user experience.
Software needs to build up the users’ trust in its fitness for a specific purpose for
it to be adopted and used in a scientific context. Software failures, at any stage of
its use, will add to user frustration and ultimately lead to a termination of usage.
Furthermore, most scientific software packages are not only provided to the com-
munity to enable scientific exploration, but also form the foundation of research for
the developers as well. If software stability is diminished, so is the capability to
build reliable prototypes on the available foundation.

With the increasing complexity of modern simulation codes, ensuring high soft-
ware quality has been on the agenda of the computational science community for
many years. Post and Kendall derived lessons learned for the ASCI program at Los
Alamos and Lawrence Livermore National Laboratories [40]. Among other factors
for successful simulation software engineering, they recommend to use “modern
but proven computer science techniques”, which means not to mix domain research
with computer science research. However, mapping modern software engineering
practices to the development of scientific simulation codes has proven difficult in
the past, as those practices focus on team-based software development in the soft-
ware industry, which is often different from scientific code development environ-
ments (e.g., the “lone researcher” [20]). As Kelly at al. found, domain researchers
outside of computer science may also perceive software engineering practices not
as essential to their research but rather as incidental [34] and being in the way of
their research progress [33]. Nevertheless, Kelly at al. do stress the importance of
strategic software testing to lower the barrier for the introduction and maintenance
of software tests in scientific projects [30].

While the adoption of rigorous software testing has not yet found broad adoption
among scientific software developers, some development teams do employ tech-
niques and supporting infrastructures already today to a varying degree [16, 21, 26,
38, 39]. However, software testing may not only benefit a single software package
at hand, but can also contribute to the assessment of larger, diverse software stacks
common on HPC platforms [32]. Still today, such work oftentimes entails the inte-
gration of different independent software components to fit all project needs, or the
development of new software frameworks to reduce the overhead of maintaining
and increasing the quality of a specific research software project.

In this spirit, our work integrates and extends available practices and software
components in the context of the constraints given by our own research projects
(e.g., time, manpower, experience) and may prove to be adaptable in parts to other
scientific software projects. As Figure 1 shows, our software ecosystem consists of
different tools and software components with various dependencies between them.
Score-P [35] is a highly scalable and easy-to-use instrumentation and measurement
infrastructure for profiling, event tracing, and online analysis of HPC applications.
It internally uses OPARI2, a source-to-source instrumenter for OpenMP constructs.
Scalasca [27, 44] is a set of tools for analyzing event traces and identifying poten-
tial performance bottlenecks—in particular those concerning communication and

Detecting disaster before it strikes 3

Score-P

OPARI2OTF2 CubeW CubeLib

Scalasca CubeGUI

Fig. 1 Our tools and software components and their build dependencies.

synchronization. The Cube components [41] operate on cubex files and consist of
(1) CubeW – a C library for writing, (2) CubeLib – a C++ library for writing and
reading plus a set of command-line tools, and (3) CubeGUI – a graphical perfor-
mance report explorer. Last but not least, we provide OTF2 [25], a highly scalable
and memory efficient event trace data format and library.

It is evident that any severe quality degradation in any of the components above
easily affects multiple other components. For example, a defect in the OTF2 com-
ponent may directly affect Score-P’s ability to create new trace measurements and
Scalasca’s ability to process existing or new trace archives. Furthermore, indirect
dependencies may impact the tools as well. For example, if the CubeGUI compo-
nent experiences a severe regression, exploration of Cube profiles—as generated by
Score-P and Scalasca—must fall back on earlier versions of the software. The au-
tomated building and testing setup described in this paper is a direct consequence
of this interdependence among our software components, in order to spot potential
problems early in the development process.

Besides the description of early approaches to automated building and testing for
our tools, the contributions of this work include:

• A workflow for using GitLab CI/CD in an HPC environment and for sources
hosted in an external Subversion repository.

• An example for building a test suite for integration testing using the JUBE work-
flow manager.

• An extension of GNU Automake’s Simple Tests rule to support programming
models that require launchers and environment variables to be set.

• Custom TAP printer extensions to the Google Test unit testing framework—
including support for MPI tests—for better integration with GNU Automake.

The rest of this paper is organized as follows. Section 2 introduces continuous
builds as a quality assurance measure and discusses the history of our automated
build setup. It also gives a detailed account of our current implementation, based on
the GitLab continuous integration / continuous delivery (CI/CD) framework. Next,
Section 3 extends the discussion to automated testing and provides examples of
our current testing approaches on various levels. Here, Section 3.3 highlights our
systematic integration testing framework for the Scalasca parallel analyzer. Finally,
Section 4 concludes this work and provides an outlook on the next steps envisioned
for further software quality assurances for our codes.

4 C. Feld et al.

2 Continuous Builds and Delivery

For any compiled software package, ensuring that the source code can be trans-
formed into an executable can be seen as a very first step toward a positive user
experience even before actually using it. Before automated builds were introduced
to the Scalasca project, the approach to ensure that the code base compiled and
worked on a wide range of HPC machines was a testathon, carried out just before
releases. Every member of the development team tried to compile the current release
candidate on the HPC machines she had access to and collected a few small-scale
measurements from simple test codes as a sanity check. Portability bugs showed up
just at this late stage in the development process. And since addressing a portability
issue with one platform or programming environment might have introduced a new
problem with another, team members had to start over multiple times due to the
creation of new release candidates. While our experience with this manual approach
showed that it was already valuable in order to identify the most serious problems
before publishing a release, it was nevertheless quite cumbersome.

2.1 History

Therefore, the Scalasca project decided to set up an infrastructure for automated
nightly builds about a decade ago. The first nightly build of the Scalasca 1.x code
base—which also included the full Cube package—ran on a developer workstation
in January 2009. The builds were carried out using a set of home-grown shell scripts
triggered by a cron job, which set up the build environment (e.g., by loading required
environment modules), checked out the main development branch of the code base
from Subversion, ran configure, make, and make install, and finally sent
an e-mail to the developer mailing list on failure. Even the very first set of builds
already exercised three different compilers (GCC, Intel, Sun), but was based on only
a single MPI implementation. Over time, this setup was extended by also including
builds with different MPI libraries, additional compilers, and covering 32- and 64-
bit environments, as well as builds on the local supercomputers available at the
Jülich Supercomputing Centre. Moreover, we enhanced the build scripts to extract
compiler warnings from the build log and report them via e-mail.

While this nightly build infrastructure did not provide feedback for every sin-
gle code revision that had been checked in, it still proved very helpful in identi-
fying portability issues early on. Therefore, we were already convinced that some
form of continuous build infrastructure—activated by every commit to our source
code repository—was mandatory when starting development of the Score-P, OTF2,
and OPARI2 projects. However, it quickly became clear that extending our build
scripts to support the new projects would require a significant effort (i.e., basically
a rewrite). Thus, the Score-P project partners decided to move away from self-
written shell scripts toward a more widespread, community-maintained solution.
As Score-P and its companion projects use Trac [24] as a minimalistic web-based

Detecting disaster before it strikes 5

project management tool, the Bitten [23] plug-in seemed like a natural choice to
implement continuous builds. Subsequently, also Scalasca 2.x and the now fully
stand-alone Cube project adopted Bitten to implement their continuous build infra-
structure.

Bitten consists of two components: a plug-in for the Trac project environment
running on the server side and a Python-based client that needs to be executed on
the build machines. The configuration has to be done on both sides. On the server
side, build configurations are defined. A build configuration listens on commits to
specific Subversion paths, defines a build recipe, and a set of target platforms. Here,
a target platform is a named set of rules against which the properties of build clients
are matched. In our setup, the target platforms were used to match against environ-
ment module and configure options, for example, whether to build static or shared
libraries, which compilers and MPI libraries to use, etc. The client side basically
consists of a shell script with given properties that is executed regularly (e.g., via a
cron job) on the build machines. The script sets up the build environment depending
on its properties and then executes the Bitten client. This client connects to the Trac
server running the Bitten plug-in providing its properties, and queries whether any
commits that satisfy all of the rules associated with the target platform are pending.
In this case, matching commits are processed according to the configuration’s build
recipe.

The Bitten approach to continuous builds has been used over several years for
the projects mentioned above. Although the builds were carried out as expected and
gave us valuable feedback, we were not fully satisfied with this solution. Building
the code base directly from the version control system required that every build
client had the build system tools (i.e., specific versions of GNU Autotools [19, 43];
sometimes with custom patches to address the peculiarities of HPC systems) to be
installed. Also, the need to maintain the configuration in two places—on the server
as target platforms and on the clients as properties—turned out to be tedious and
error-prone. For example, every new Subversion branch that should be built contin-
uously required to manually define a new configuration from scratch on the server,
as the Bitten plug-in does not provide an option to copy an existing configura-
tion. Moreover, the client configurations on potentially all build machines had to
be adapted accordingly.

Over time, we developed the desire to specify dependencies between builds, that
is, to create build pipelines. On the one hand, this was motivated by the fact that a
build failure caused by a syntax error or a missing file rather than a portability issue
triggered failure e-mails from every build client, thus polluting the e-mail inboxes
of all developers—one couldn’t see the wood for the trees. On the other hand, we
wanted our tests to be closer to a user’s perspective, that is, building from a tarball
instead of directly from the version control system. In addition, we wanted to make
a successfully built tarball publicly available. Thus, a pipeline that would meet our
requirements consists of several stages:

• The first stage builds the code base in a single configuration straight from the
repository sources and generates a distribution tarball. Only this initial build
requires special development tools, in our case specific and patched versions of

6 C. Feld et al.

GNU Autotools and Doxygen [7]. Build failures in the generic parts of the code
base are already detected during this step and therefore only trigger a single
e-mail.

• The next stage performs various builds with different configurations to uncover
portability issues, using the generated tarball and the development environments
available on the build machines. This corresponds to what a user would experi-
ence when building a release.

• A subsequent stage makes the tarball publicly available once all builds report
success.

• An additional stage could implement sanity checks between dependent projects,
for example, to detect breaking API changes as early as possible. Also, this stage
could trigger automated tests to run asynchronously after successful builds.

With the pipeline outlined above, our infrastructure would not only do continuous
builds, but continuous delivery (CD) [31], by ensuring that the latest version of our
software can be released as a tarball at any time, even development versions. Please
note that our development process is based on feature branches that get integrated
into the mainline after review. Thus, our process is currently not based on continuous
integration (CI) [17]—the practice of merging all developer working copies to a
shared mainline several times a day.

As Bitten has no built-in support for pipelines, we experimented with emulating
this feature via build attachments and non-trivial shell scripts. However, this setup
quickly became more and more complex, and added to the maintenance worries we
already had. Moreover, the fact that Bitten had not been actively maintained for the
last couple of years also did not increase our trust in this tool.

All in all, we felt a pressing need to find a replacement that lowers the main-
tenance burden, provides support for build pipelines, and is actively maintained.
As a requirement for the replacement, the configuration of the entire infrastructure
should allow for easy integration of new clients and new repository branches. This
would allow us to easily adjust the number of (HPC) machines that take part in the
CD effort. We could also invite users with access to new and exotic systems to be-
come part of our CD infrastructure, just by installing and configuring a client on
their side, if they don’t have concerns executing our build scripts on their machine.
Besides clients running on local servers and login nodes of HPC machines, the pos-
sibility of running containerized clients would provide an easy way to improve the
coverage of operating systems and software stacks under test. An easy integration of
new branches into the CD infrastructure is also considered crucial; setting up CD for
a new release branch should be matter of minutes rather than the cause of anxiety.

We did a superficial evaluation of a few available solutions to check whether they
would meet our requirements:

• Jenkins [11] – The configuration of a Jenkins server requires the use of plug-
ins. One can run builds on remote servers using SSH plug-ins. Here the server
connects to the client, thus the server’s public SSH key needs to be added to
the authorized keys file on the client side. From a security point of view
this is a little worse than a client connecting to the server. We will address the

Detecting disaster before it strikes 7

security related issues in Section 2.3 below. Moreover, all projects hosted by a
Jenkins instance by default share the SSH key setup, which is a huge impedi-
ment for providing a central Jenkins service also covering projects outside of
our ecosystem. At the time of writing, this limitation could only be overcome
using a commercial plug-in. Furthermore, the vast number of plug-ins and the
available documentation did not guide us to a straightforward configuration of
the server, but felt like a time-consuming trial-and-error endeavor.

• Travis [14] – Travis CI is a continuous integration service for GitHub [9]
projects. Although we envision a transition from Subversion to git for our code
base, it is not clear if the code will be hosted on GitHub. Moreover, builds can
only be run within containerized environments on provided cloud resources,
that is, testing with real HPC environments would not be possible. Therefore,
we did not investigate this option any further.

• GitLab CI/CD [10] – The CI/CD component integrated into the GitLab plat-
form seemed to best match our requirements. It supports server-side configu-
ration in a single location, build pipelines, and the generation of web pages.
Moreover, new build clients can easily be set up by copying a statically linked
executable (available for x86, Power, and ARM), and registering the client with
the server only once.

Considering the results of this quick evaluation, we decided to replace the Bitten-
based continuous builds by GitLab CI/CD, starting with the Cube project. The fact
that GitLab allowed self-hosting of projects already stirred interest for it as a re-
placement for the multi-project Trac server run by our institute. This has certainly
influenced our decision to investigate its capabilities early on. While migrating
the Cube project, it quickly turned out that GitLab CI/CD was as good match for
our requirements. We then moved to GitLab CI/CD also for our remaining projects
(Score-P, Scalasca 2.x, OTF2, and OPARI2).

2.2 GitLab CI/CD

For every project to be continuously delivered1—that is, Score-P, Scalasca 2.x,
Cube, OTF2, and OPARI2—we created a corresponding GitLab project, each pro-
viding an associated git repository. However, as mentioned before, all the compo-
nents listed above are currently still hosted in Subversion repositories, and migrat-
ing everything to git was not an option within the available time frame. Thus, the
GitLab project is currently only used to provide the CD functionality, and the git
repository to store the configuration of the CD system. Yet, this required us to find
a way to trigger GitLab CI/CD actions from Subversion commits. Our solution in-
volves three parties: the Subversion repository, an intermediary GitLab project, and
the GitLab CI/CD project responsible for the continuous builds.

1 From the perspective of setting up and configuring the infrastructure, there is no real distinction
between continuous integration and continuous delivery.

8 C. Feld et al.

On the Subversion side, a post-commit hook collects information about each
commit, for example, path, revision, author, commit message, etc. Using GitLab’s
REST API, this data is passed to the CI/CD pipeline of the intermediary GitLab
project, whose sole purpose is to match the Subversion commit’s path with a branch
in the GitLab CI/CD project.2 In case of a match, the build recipe of the intermediary
GitLab project commits the Subversion data it received from the post-commit hook
to a file in the matching GitLab CI/CD branch, thereby providing all information
necessary to access the correct Subversion path and revision from within build jobs
of this GitLab CI/CD branch. Only then the build pipeline for the matching branch
is triggered explicitly from the intermediary project, again using a REST API call.
While the functionality of the intermediary GitLab project’s CD recipe could also
be included in the Subversion post-commit hook, this approach decouples the trig-
ger from the actual branch mapping. This allows for convenient changes using a
git repository without the need to update the post-commit hook on the Subversion
server.

With GitLab CI/CD, the entire configuration is specified in a single file named
.gitlab-ci.yml that resides inside a git branch. This file defines a pipeline,
which by default is triggered by a new commit to this branch. A pipeline consists
of an ordered set of stages. Each stage comprises one or more jobs, with each job
defining an independent set of commands. A stage is started only after all jobs of
the previous stage have finished. Individual jobs are executed by runners (e.g., build
clients), which have to be registered once with the GitLab server. Runners can either
be specific to a single project or shared among multiple projects. Optionally, a list of
tags (arbitrary keywords) can be associated with a runner at registration time. This
way it can be restricted to only execute jobs that exclusively list matching tags in
their job description. Communication between stages beyond success and failure,
which is provided by default, can be achieved via per-job artifact files. Artifact files
of jobs are automatically available to all jobs of subsequent stages.

In our current implementation, the CI/CD pipeline consists of the following five
stages: (1) creating a distribution tarball, (2) configuring, building, and testing the
tarball with different programming environments, (3) evaluating the build results
and sending out e-mail notifications if necessary, (4) preparing tarball delivery, and
(5) generating web pages.

The initial, single-job create tarball stage first checks out the corresponding
project’s source code from Subversion, leveraging the commit information provided
by the intermediary GitLab project as outlined above. It then configures and builds
the sources in a single configuration (currently GCC/Open MPI), generates the user
documentation, and then creates a self-contained distribution tarball. Finally, this
tarball is uploaded to the GitLab server as a job artifact. As this is the only stage
working with a checkout from a version control system, special development tools
such as GNU Autotools or Doxygen are only required during this step.

Since job artifacts like the distribution tarball are readily available in subsequent
stages, the follow-up test tarball stage can use it in the same way a user would

2 For example, all commits to Subversion trunk matches git trunk, and commits to Subversion
branches/RB-4.0 matches git RB-4.0.

Detecting disaster before it strikes 9

build and install our released versions. This stage comprises multiple jobs, each
testing the tarball with a specific configuration or on a particular HPC platform.
Each job executes the configure script with appropriate options, runs make
and make install, and triggers a number of automated tests (see Sections 3.1
and 3.2). We currently cover configurations using different compilers (GCC, PGI,
Intel, Cray, IBM XL, Fujitsu), diverse MPI implementations (Open MPI, SGI
MPT, MVAPICH2, Intel MPI, Cray MPI, Fujitsu MPI), multiple architectures (x86,
Power, SPARC, ARM), HPC-specific programming environments (Cray XC, K
computer), and several configuration options (e.g., with internal/external subcompo-
nents, whether to build shared or static libraries, or with PAPI, CUDA, or OpenCL
support enabled).

The create tarball and test tarball stages also upload additional build artifacts
to the GitLab server, for example, the build log in case of failure. The subsequent
evaluate stage analyzes these artifacts from the previous stages and, in case of an
error, determines which message to send to which audience via e-mail. Here, we
distinguish four different error cases: (1) create tarball took too long or did not
start, (2) create tarball failed, (3) one or more test tarball jobs took too long or did
not start, and (4) one or more test tarball jobs failed. Examples for (3) are jobs that
are supposed to run on remote machines where the machine is in maintenance or
not accessible due to other reasons. These jobs are marked allowed to fail, which
allows for subsequent stages to continue. Nevertheless, we are able to detect these
jobs since they do not provide a specific artifact file created by successful/failing
jobs. The error cases (1), (2), and (3) are communicated to the commit author and
the CI/CD maintainer only, as they should be able to figure out what went wrong.
This way we refrain from bothering the entire developer community. In contrast,
case (4)—a real build failure—is communicated to a wider audience with the hope
in mind that the community helps to fix the issue. Note that there is only a single
failure e-mail sent out per pipeline invocation, summarizing all build failures and
providing links to the individual build logs for further investigation.

In absence of a real build failure, the prepare delivery stage is responsible for
copying the distribution tarball, the generated documentation, and related meta-data
to a shared directory. This directory collects the artifacts from the last N pipeline
invocations for multiple branches.

The last stage, generate pages, operates on this shared directory and creates
a simple website that provides the tarballs and corresponding documentation for
all successful builds it will find in the directory. This website is published via
GitLab CI/CD’s built-in feature pages and is publicly accessible.3 This way bug
fixes and experimental features are available to the interested audience soon after
they have been committed and in a completely automated process.

With the entire configuration specified in a single file stored in a git repository,
bringing a new branch under CD is now trivial: we just need to create a new branch
from an existing one that is already under CD. As the configuration file lives inside
the git branch, it is copied and will carry out jobs for the new branch as soon as

3 See, e.g., http://scorepci.pages.jsc.fz-juelich.de/scorep-pipelines/

10 C. Feld et al.

the CI/CD pipeline is triggered. However, care needs to be taken not to hardcode
any paths (e.g., the installation prefix) or variables into the configuration file as this
might lead to data races when pipelines from different branches run in parallel. To
prevent this, GitLab CI/CD offers a set of predefined branch-unique variables that
can be used inside the configuration file to make it race-free. Using these variables, a
strict branch naming scheme, and GitLab CI/CD’s feature to restrict jobs to match-
ing branch names, we were able to create a single .gitlab-ci.yml file and
associated shell scripts that can be used for any newly created branch.

In our setup, the GitLab CI/CD runners execute on the build machines (local
servers dedicated for CD and testing as well as login nodes of multiple HPC systems
we have access to) and identify themselves via tags. They regularly connect to the
GitLab server to check whether there are any jobs waiting to be executed that match
their tags. If this is the case, the git repository is cloned on the client side and the
job is executed according to the job definition contained in .gitlab-ci.yml.
For our projects, runners are started in the default run mode, creating a process that
is supposed to run forever. However, this is problematic on HPC systems as there
might be a policy in place to kill long-running login-node processes after a certain
time period, usually without prior notice. As we want the runners to be operating
continuously, we have implemented a kill-and-restart mechanism that preempts the
system’s kill. This mechanism is under our control and works as follows: when
starting the runner, we schedule a QUIT signal after a given time period by prefixing
the runner command with timeout -s QUIT <period>. If a runner receives
this signal and is currently processing a job, it first will finish this job and then exit.
Otherwise, it will exit immediately. To keep the runner operational, a cron job on the
HPC machine or on one of our local test systems will regularly restart the runner,
again scheduling the QUIT signal. This regular restart will be a no-operation if the
runner is still alive.

With GitLab CI/CD and the Subversion-to-GitLab trigger mechanism, we now
have a robust, low maintenance, and extensible continuous delivery infrastructure
that is a vast improvement over the previous Bitten-based approach.

The source code of the Score-P and Scalasca projects already include depen-
dent projects like OTF2, OPARI2, CubeW, or CubeLib. When building these parent
projects, the subproject code is built as well, at least during the create tarball stage.
However, this does not hold for the—with regards to source code—independent
Cube components that do not utilize the dependency management mentioned above.
These components, except for CubeGUI, work directly on cubex files. As changes
in one component might affect the ability to read and/or write cubex files in other
components, care must be taken to keep them synchronized. This is ensured by
an additional GitLab CI/CD project that is triggered from Subversion commits to
any of the Cube components, also using the intermediary GitLab CI/CD project for
branch matching described above. This additional GitLab CI/CD project starts with
building all Cube components. On success, CubeW is used to generate cubex files
with given contents. These files are passed to CubeLib, where they are read and the

Detecting disaster before it strikes 11

validity of the contents is verified. This way, we are able to detect early on when the
components get out of sync.4

2.3 Open Issues

We need to mention that all build clients in both our previous Trac/Bitten and the
current GitLab CI/CD setup run with user permissions. This is a potential security
risk as all users with permission to commit to a Subversion repository may trigger
a build pipeline that executes code on a system they might not have access to. The
code that is executed are configure scripts and Makefile targets. Adding malicious
code to these files is possible for every developer with commit rights. In our projects,
however, only trusted developers have the right to commit and are therefore able to
trigger builds. Moreover, new features undergo a thorough code review process so
that malicious code is likely to be detected.

Compared to a manual build by a user, either using a tarball or sources checked
out from a version control system’s repository, we do not see a significant difference
to automated builds with regards to security. Although a manual build would allow
for an in-depth examination of the entire code base before executing a build, this is
not feasible in general.

Another attack vector would be a malicious change to the .gitlab-ci.yml
configuration file and associated helper scripts. In our case, write access to these files
is only granted to a subset of the trusted developers with Subversion commit rights.
We consider this setup safe enough for our purposes and the security concerns of
HPC sites.

In contrast to GitLab CI/CD, Jenkins jobs are not initiated by a polling client, but
a pushing Jenkins server. With access to the server it might be possible to log into
the remote build machines, making it slightly easier to perform harmful activities.

As already mentioned, we plan to migrate our code base from Subversion to
git, potentially hosted on a publicly accessible platform. Here, we might get merge
requests from untrusted developers. To deal with such requests, we envision a three-
step CD approach. In the first step we would run the create tarball stage and some
of the test tarball jobs in a Docker-containerized environment [6]. On success, the
second step would comprise a manual code review process. CD jobs on the HPC
systems will be triggered only if this review has a positive outcome.

Unfortunately we cannot move all CD jobs into containers, as our target systems
are real HPC machines with their non-standard setups and programming environ-
ments. To the best of our knowledge, containers for these site-specific setups do not
exist, and it is beyond our abilities to create such container images ourselves. Thus,
it would be of great help if HPC sites acknowledge the need for continuous building
and testing, and make some dedicated resources available for this purpose, as well
as assist in creating containerized environments of their respective setups.

4 Instead of using an additional GitLab CI/CD project, the Cube component’s individual
GitLab CI/CD projects could trigger each other using GitLab CI/CD’s REST API.

12 C. Feld et al.

3 Automated Testing

While continuous builds are vital to get rapid feedback on whether a code base
compiles with different programming environments and configurations, they do not
ensure that the code actually works as expected. For this, tests have to be executed
on various levels—ideally also in an automated fashion.

For automated testing we need to differentiate between tests that are executed
on login nodes and tests that are supposed to run on compute nodes. While the
former can be run directly in the build environment—if not cross-compiled—the
latter pose a challenge as execution of compute-node tests might need a special and
non-standardized environment and startup procedure like a job submission system.
In Section 3.3 we present our approach to tackle this challenge with regards to the
Scalasca project. The following two sections will describe how we approach tests
that do not require a job submission system. As the build systems of our tools are
exclusively based on GNU Autotools, we use the standard targets make check
and make installcheck to execute these tests.

3.1 make check

The Scalasca project started its journey toward more rigorous and systematic
testing in 2012. As an initial step, we surveyed a number of C++ unit testing
frameworks with respect to their documentation, ease of use, feature sets, and
extensibility. In particular, we evaluated the following unit testing frameworks:
CppUnit [3], CppUnitLite [4], CxxTest [5], UnitTest++ [15], FRUCTOSE [8],
CATCH5, Boost.Test [1], and Google Test [29]. After weighing the strengths and
weaknesses of the various solutions, we opted for Google Test to implement unit
tests for Cube and Scalasca, as it seemed to best fit our needs. (Note that a re-
evaluation would be necessary when starting a new project today, as the capabilities
of the frameworks have evolved over the past years.)

All our unit tests are part of the main code base and triggered using the standard
GNU Autotools make check target. However, the default test result report gen-
erated by Google Test is quite verbose and does not integrate well with the GNU
Autotools build system. Therefore, we have developed a TAP [42] result printer ex-
tension, which is able to communicate the outcome of every single unit test to the
Automake test harness rather than indicating success/failure on the granularity of
test executables. In addition, details on failed tests (actual vs. expected outcome)
are included in the test log as TAP comments. While TAP test support is not yet a
first-class citizen in Automake, it only requires a one-off manual setup.

We also enhanced Google Test to support MPI-parallel tests. In this mode, the
TAP result printer extension first collates the test results from each rank, and then
prints the combined overall test result from rank 0. Such parallel tests are only run

5 Original website no longer accessible; see [2] for the follow-up project.

Detecting disaster before it strikes 13

when enabled during configure using the --enable-backend-test-runs
option, as it is often not allowed to execute parallel jobs on the login nodes of HPC
systems.6 We also use them sparingly (e.g., to test a communication abstraction
layer on top of MPI), as parallel tests are expensive. In addition to the enhance-
ments outlined above, a minimal patch was required to make Google Test compile
with the Fujitsu compilers on K computer.

The Score-P project took a different approach to tune the make check rule to
fit its specific testing needs. As in the Scalasca project, tests that are supposed to
run on compute nodes need to be explicitly enabled during configure. Besides
that, Score-P comes with login-node tests that are always executed. We implement
these tests using the standard Automake Simple Tests rule. While the login-node
tests are purely serial programs, the compute-node tests consist of serial, OpenMP,
MPI, MPI+OpenMP, and SHMEM programs. While serial compute-node programs
do not need any special treatment, OpenMP programs require at least a reason-
able value for OMP NUM THREADS, and MPI and SHMEM programs are started
via mpiexec and oshrun launchers, also requiring a reasonable value for the
number of ranks to be used. As the different startup mechanisms and specific envi-
ronment settings could not be modeled by the standard Automake Simple Tests rule,
we decided to slightly modify the existing rule for each programming model and
combinations thereof. That is, we copied the default make check related rules to-
gether with their associated variables. This results in quite some code duplication7,
but is a straightforward and extensible way of implementing the required function-
ality. After copying, we made the duplicate target and variable names unique by
adding programming model specific postfixes. As a next step, we modified minor
portions of the code in order to set the required environment variables and to in-
troduce standard program launchers. Finally, we use the standard check-local
rule to trigger the new programming model specific tests. The mechanism described
above allows us to stay entirely within the GNU Autotools universe and to use Au-
tomake’s Simple Tests framework for arbitrary programming models. We need to
stress that this extension of the make check rule is not supposed to be used with
job submission systems with their asynchronous nature, but with standard, blocking
launchers like mpiexec and oshrun.

The aforementioned CubeLib component also provides make check targets.
As all Cube components work on cubex files, it is an obvious approach to try to
compare generated files against a reference. However, this is not easily possible as
cubex files are regular tar archives. These tar archives bundle the experiment
meta-data with multiple data files. Since the experiment meta-data usually also in-
cludes creator version information, and tar archives store file creation timestamps,
a simple file comparison against a reference solution using, for example, the cmp
command is not feasible.8

6 Note that all tests are built unconditionally during make check, and thus can be run on a
compute node afterwards outside of the build system.
7 Note that the copies might need to be updated for every new version of GNU Automake.
8 The deprecated Cube v3 file format is a pure XML format and can be compared using cmp.

14 C. Feld et al.

The CubeLib component is able to write and read cubex files and comes with a
set of file manipulation tools. The test workflow here is as follows: we write cubex
files using the writer API. The generated file is then processed by a CubeLib tool,
using the reader API. The resulting file is compared against a reference using a
special cube cmp tool which overcomes the problems of comparing Cube’s tar
archives mentioned above.

3.2 make installcheck

The installcheck rule is used by the Score-P, OTF2, OPARI2, and Cube
projects. It is supposed to work on an installed package as a user would see it.
Amongst others, we use this target to verify that our installed header files are self-
contained. To test this we created minimal test programs that only include individual
header files of our package installations and check whether these programs compile.
In addition, we have implemented a huge number of Score-P link tests which test
one of the central components of the Score-P package, the scorep instrumentation
command. It is used as a compiler prefix in order to add instrumentation hooks and
to link additional libraries to the executable being built. This command comes with
lots of options, libraries to be added, and libraries to be wrapped at link time. We
need to ensure that every valid combination of options leads to a successfully linked
application. We do this by building scorep-instrumented example programs cov-
ering nearly the entire valid option space9 and inspecting them afterwards to verify
that they were linked against the expected libraries. The run-time behavior of these
instrumented programs is not tested here. For this we would need to execute the
programs on compute nodes with their non-standard way of submitting jobs. Be-
sides that, the nature of the test programs was not chosen to test for specific Score-P
internals, but to provide a way of testing the compile- and link-time behavior of
the scorep command. Furthermore, other Score-P login-node executables are ac-
companied by a few tests to check if their basic functionality works as expected. In
case of the OPARI2 project, make installcheck just tests the basic workflow
of the OPARI2 source-to-source instrumenter and checks if an instrumented hello
world program can be compiled.

Cube components come with associated cube*-config tools. These tools
provide compile and link flags a user needs to apply when building and linking
against one of the Cube components. To ensure that these config tools provide the
correct flags and paths, we reuse a subset of the make check tests also during
make installcheck. Here, we are no longer interested in the functionality of
the internals but whether a user could build an application linked against a Cube
component. For that we replace the make check build instructions—provided by
the Cube component’s build system—with the ones provided by the already installed
config tool.

9 We choose this time- and disk-space-consuming brute force approach in a early stage of the
Score-P project as it was the easiest to implement in a period of high code change rate.

Detecting disaster before it strikes 15

The same approach is used to test the CubeGUI plug-in API. Here we build
a hello world plug-in that exemplifies the entire API. Furthermore, the CubeGUI
package does not provide any additional tests, in particular no tests for the graphical
user interface itself, as these are difficult to automate.

3.3 Scalasca Testing Framework

As already outlined in Section 2, system testing of the Scalasca Trace Tools package
traditionally has been done manually in a rather ad-hoc fashion before publishing a
new release. In addition, it has been continuously tested implicitly through our day-
to-day work in applying the toolset to analyze the performance of application codes
from collaborating users, for example in the context of the EU Centre of Excellence
“Performance Optimisation and Productivity” [13]. While this kind of manual test-
ing has proven beneficial, it is not only laborious and time-consuming, but usually
also only covers the core functionality, and therefore a small fraction of all possible
code paths. Moreover, it suffers from non-deterministic test inputs, for example, due
to using applications with different characteristics, run-to-run variation in measure-
ments, or effects induced by the platform on which the testing is carried out. This
makes it hard—if not impossible—to verify the correctness of the results.

To overcome this situation and to allow for a more systematic system testing
of the Scalasca Trace Tools package, we developed the Scalasca Test Suite on top
of the JUBE Benchmarking Environment [36]. JUBE is a script-based framework
that was originally designed to automate the building and execution of application
codes for system benchmarking, including input parameter sweeps, submitting jobs
to batch queues, and extracting values from job outputs using regular expressions
to assemble result overview tables. With JUBE v2, however, it has evolved into
a generic workflow management and run control framework that can be flexibly
configured also for other tasks, using XML files. JUBE v2 is written in Python and
available for download [12] under the GNU GPLv3 open-source license.

In case of the Scalasca Test Suite, we leverage JUBE to automate a testing work-
flow which applies the most widely used commands of the Scalasca Trace Tools
package on well-defined input data sets, and then compares the generated output
against a “gold standard” reference result. Commands that are supposed to be run in
parallel on one or more compute nodes of an HPC system (e.g., Scalasca’s parallel
event trace analysis) are tested by submitting corresponding batch jobs, while serial
tools that are usually run on login nodes (e.g., analysis report post-processing) are
executed directly. Each test run is carried out in a unique working directory auto-
matically created by JUBE, and consists of the following steps:

• prereq – This initial step checks whether all required commands are available
in $PATH, to abort early in case the testing environment is not set up correctly.

• fetch – This step copies the input experiment archives (i.e., event traces) and ref-
erence results, both stored as compressed tar files, from a data storage server
to a local cache directory which is shared between test runs. To only transfer

16 C. Feld et al.

new/updated archives, we leverage the rsync file-copying tool which uses an
efficient delta-transfer algorithm. The connection to the data storage server is
via SSH, with non-interactive operation being achieved using an SSH authen-
tication agent. The list of files that need to be considered in the data transfer
is generated upfront and passed to a single rsync call, thus avoiding being
banned by the data storage server due to trying to open too many connections
in a short period of time.

• extract – This step extracts the input experiment archive and reference result
tar files into the per-test working directories.

• scout – During this step, Scalasca’s parallel event trace analyzer scout is run
on the input experiment archives. For multi-process experiments (e.g., from
MPI codes), the input trace data is pre-processed by applying the timestamp cor-
rection algorithm based on the controlled logical clock (clc) [18]. If the analysis
completes successfully, the generated analysis report is compared to a reference
result.

• remap – This step depends on the successful completion of the previous scout
step. It executes the scalasca -examine command to post-process the
generated trace analysis report. If successful, the post-processed report is com-
pared to a reference result.

• clc (multi-process experiments only) – This step runs the stand-alone timestamp
correction tool on the input experiment archives. This parallel tool uses the
same controlled logical clock algorithm as the trace analyzer, but rewrites the
processed trace data into a new experiment archive. As storing reference traces
for comparison is quite expensive in terms of disk space, the execution of this
tool—if successful—is followed by another run of the event trace analyzer with
the timestamp correction turned off. The resulting analysis report is then again
compared to a reference solution.

• analyze – This step parses the stdout and stderr outputs of the previ-
ous steps to determine the number of successful/failed tests, and to generate an
overview result table.

The individual test cases (i.e., input experiment archives) are currently structured
along three orthogonal dimensions, which form a corresponding JUBE parameter
sweep space:

• Event trace format
• Programming model
• Test set

Our current set of more than 180 test cases already covers experiments using the
two supported event trace formats OTF2 and EPILOG (legacy Scalasca 1.x trace
format), traces collected from serial codes as well as parallel codes using OpenMP,
MPI, or MPI+OpenMP in combination, and three different test sets: benchmark,
feature, and regression. The benchmark test set includes trace measurements from
various well-known benchmarks (e.g., NAS Parallel Benchmarks [37], Barcelona
OpenMP Tasks Suite [22], Sweep3D). The feature test set, on the other hand, con-
sists of trace measurements from small, carefully hand-coded tests, each focussing

Detecting disaster before it strikes 17

on a particular aspect (see Section 3.4). Finally, the regression test set covers event
traces related to tickets in our issue tracker. Leveraging traces in the test suite which
have triggered defects that were subsequently fixed ensures that those defects are not
accidentally re-introduced into our code base. Note that additional parameter values
(e.g., to add a new test set) can easily be supported by our test suite; only adding new
programming models (e.g., POSIX threads) requires straightforward enhancements
of the JUBE configuration, as this usually impacts the way in which the (parallel)
tools have to be launched.

Instead of handling input experiment archives as an additional JUBE parameter,
the testing steps outlined above are only triggered for each (format, model, test set)
triple, and then process all corresponding input experiment archives in one go. Oth-
erwise, an excessive number of batch jobs would be submitted for each test run.
Moreover, many test cases—especially in the feature test set—are quite small, lead-
ing to tests that execute very quickly. Thus, the batch queue management and job
startup overhead would significantly impede testing turnaround times. Each step
therefore evaluates two text files listing the names of the experiments—one per
line—that shall be considered for the current parameter triple: one file lists all input
archives for which the tests are supposed to pass successfully, while a second file
lists the experiments for which testing is expected to fail (e.g., to check for proper
error handling). For improved readability, additional structuring, and documenta-
tion purposes, both files may include empty lines as well as shell-style comments.
The steps then iterate over the list of experiment archives and execute the corre-
sponding test for each input data set. Since the tested tool may potentially run into a
deadlock with certain input experiments due to some programming error, each test
execution is wrapped with the timeout command—to be killed after a (globally)
configurable period of time—and thus ensures overall progress of a test run.

After a test batch job has completed, result verification is performed serially (on
the login node) based on the resulting cubex files. As mentioned before, cubex
files are regular tar archives which cannot be compared against a reference solution
using cmp. Instead, we use a combination of multiple Cube command-line tools
(cube info, cube calltree, and cube dump) to first extract and compare
the list of metrics, the calltree, and the topology information, respectively. Then, the
actual data is compared using cube test, a special tool that can be configured to
compare metrics either exactly by value, or whether the values are within provided
absolute or relative error bounds.

Although the Scalasca Test Suite operates on fixed pre-recorded traces, the
Scalasca event trace analyzer still produces non-deterministic results for several
metrics. For historic reasons, its internal trace representation uses double-precision
floating-point numbers for event timestamps (seconds since the begin of measure-
ment). Therefore, the integer event timestamps used by the OTF2 trace format are
converted on-the-fly to a corresponding floating-point timestamp while reading in
the trace data. During the analysis phase, timestamp/duration data from multiple
threads or processes is then aggregated (e.g., via MPI collective operations or shared
variables protected by OpenMP critical regions) to calculate several metrics. As the
evaluation order of those aggregations cannot be enforced, their results are subject to

18 C. Feld et al.

$./testsuite.sh
Executing Scalasca Test Suite (this can take a while...)

OVERALL:
#tests | #pass | #fail | #xfail | #xpass | #error | #miss
-------+-------+-------+--------+--------+--------+------

189 | 182 | | | | 4 | 3

Fig. 2 Scalasca Test Suite: Example overview result table. The columns list the overall num-
ber of tests (#tests), the number of tests that expectedly passed result verification (#pass),
failed result verification (#fail), expectedly failed (#xfail), were expected to fail but passed
(#xpass), failed with a non-zero exit code, crashed, or were killed due to timeout (#error), or
where the required input data or a reference solution was missing (#miss), respectively.

run-to-run variation and therefore prohibit an exact bitwise comparison. However,
the results are still within small error bounds and can be verified using a “fuzzy
compare” with the aforementioned cube test tool. This issue could be fixed by
consistently using only integer values for timestamps and durations, however, this
requires a major code refactoring that affects almost the entire code base, and thus
should not be done without having proper tests in place.

From a user’s perspective, the main entry point for the Scalasca Test Suite is
the testsuite.sh shell script, which automates the execution of various JUBE
commands to perform all preparatory steps, submit the test batch jobs, wait for
their completion, trigger the result verification, and generate an overview result
table (see Figure 2). Test runs can be configured via a central configuration file,
config.xml, for example, to restrict the parameter space (e.g., only run tests for
MPI experiments in the feature test set) or to skip particular test steps (e.g., the clc
step) using JUBE’s tag feature. This can be useful to focus the testing effort on a
particular area during development, and thus improve turnaround times. In case of
failing tests, a more detailed report can be queried (Figure 3). The step name and
number as well as the parameter values then uniquely identify the corresponding
JUBE working directory. For example, all input experiment archives, job scripts and
outputs, and results from step 5 of the example run shown in Figure 3 can be found
in the directory 000005 clc otf2 mpi feature/work for further analysis.

3.4 Systematic test cases

As outlined in the previous section, the feature test set of the Scalasca Test Suite
consists of trace measurements from small test codes that each focus on a particular
aspect. The main advantage of such targeted test codes compared to benchmarks,
mini-apps, or full-featured applications is that they are simple enough to reason
about the expected result, and thus allow for verifying correct behavior.

One example of such feature test codes is a set of programs covering all blocking
MPI collective operations. Building upon the ideas of the APART Test Suite [28],

Detecting disaster before it strikes 19

$./testsuite.sh -d
OVERALL:
#tests | #pass | #fail | #xfail | #xpass | #error | #miss
-------+-------+-------+--------+--------+--------+------

189 | 182 | | | | 4 | 3

SCOUT:
step | format | model | testset | #tests | #pass | | #error | #miss
-----+--------+-------+---------+--------+-------+- ... -+--------+------

2 | otf2 | mpi | feature | 40 | 40 | | |
3 | epik | mpi | feature | 23 | 23 | | |

REMAP:
step | format | model | testset | #tests | #pass | | #error | #miss
-----+--------+-------+---------+--------+-------+- ... -+--------+------

4 | otf2 | mpi | feature | 40 | 40 | | |
6 | epik | mpi | feature | 23 | 23 | | |

CLC:
step | format | model | testset | #tests | #pass | | #error | #miss
-----+--------+-------+---------+--------+-------+- ... -+--------+------

5 | otf2 | mpi | feature | 40 | 36 | | 4 |
7 | epik | mpi | feature | 23 | 20 | | | 3

Fig. 3 Scalasca Test Suite: Example of a detailed result table of a test run limited to MPI tests of
the feature test set. Due to space restrictions, the (empty) #fail, #xfail and #xpass columns
have been omitted from the per-step result tables.

each individual test program exercises the corresponding operation on different
communicators, like MPI COMM WORLD, MPI COMM SELF, and communicators
comprising all odd/even ranks and the upper/lower half of ranks, respectively, as
well as with different payloads. Moreover, we use pseudo-computational routines
(i.e., functions that busy-wait for a specified period of time) to induce imbalances,
thus constructing event sequences exhibiting a particular wait state detected by the
Scalasca event trace analyzer in a controlled fashion. As a sanity check, each test
program also includes at least one situation in which the analyzer should not detect
any (significant) wait state.10 Each specific situation to be tested is wrapped inside
a unique function, which leads to distinct call paths in the analysis report and thus
allows easy identification. For all of these test cases, we verified that the key metrics
calculated by the Scalasca trace analyzer match the expected results, and created
tickets for further investigation in our issue tracker when broken or suspicious be-
havior was encountered. Although the programming language in which the tests are
written is irrelevant for a trace analysis operating on an abstract event model, we
implemented them in both C and Fortran, as we anticipate that the test codes will
also be useful for testing Score-P—in particular its MPI adapter—on a regular ba-
sis. For this reason, we also created additional variants using magic constants (e.g.,
MPI IN PLACE) that require special handling during measurement.

10 For some calls, for example N-to-N collectives such as MPI Allreduce, it is impossible to
construct a test that does not exhibit any wait state. However, the detected wait state will be very
small if the preceding computation is well-balanced, and thus can be distinguished from a “real”
wait state.

20 C. Feld et al.

In addition, we also developed a configurable trace-rewriting tool—with the in-
tention to create even more test cases based on trace measurements collected from
the test codes outlined above. This tool allows simple operations such as modify-
ing event timestamps or dropping individual events. We currently use it to inject,
for example, artificial clock condition violations into event traces to test Scalasca’s
timestamp correction algorithm, or other artifacts to test proper error handling.

Obviously, writing good test cases is a non-trivial undertaking that requires quite
a bit of thought. However, we consider them a well-spent effort that pays off in the
long run. For example, these systematic tests already helped to uncover a number of
issues in both the Score-P and Scalasca Trace Tools packages that would have been
very hard to spot with real applications. Moreover, the collected trace measurements
used in the feature test set of the Scalasca Test Suite have proven worthwhile as a
“safety net” during various larger refactorings in the Scalasca code base.

3.5 Open Issues

With many scientific projects, the initial focus of development usually is on making
quick progress rather than on writing code that is also covered by tests—and our
projects were no exception. That is, most of our tests that exist today have been
written after-the-fact and lots of legacy code is still untested. However, retroactively
adding tests for entire code bases that have grown for a decade or more is prohibitive.
For example, the MPI 3.1 standard already defines more than 380 functions for
which the current Score-P 4.1 is providing wrappers that would require appropriate
tests to be written—not to mention SHMEM, CUDA, OpenCL, etc. Thus, we strive
to add tests for newly written or refactored code (following the so-called “boy scout
rule”), thereby slowly increasing our test coverage.

As mentioned in the previous section, we also envision that the systematic test
cases could be used for regular and automated Score-P testing. For this purpose, a
JUBE-based framework similar to the Scalasca Test Suite needs to be implemented.
While various parts of the existing JUBE configuration could likely be reused, and
building, instrumenting, and running test codes with JUBE is straightforward, result
verification is much more challenging than in the Scalasca case using fixed input
data sets. Whereas most counter values such as the number of bytes sent/received
by message passing calls can be compared exactly, time measurements may vary
considerably between runs. Also, different compilers (and even compiler versions)
may use different name mangling schemes or inlining strategies, thus leading to
variations in the experiment meta-data, in particular the definitions of source code
regions and the application’s call tree. Moreover, measurements from task-based
programs are inherently non-deterministic. Although we do not have a good answer
for how to address these issues at this point, both profile and trace measurement
results could nevertheless be subject to various sanity checks. For example, profile
measurements should only include non-negative metric values and generate self-
contained files that can be read by the Cube library, and event traces should use

Detecting disaster before it strikes 21

consistent event sequences such as correct nesting of ENTER/LEAVE events. This
would at least provide a basic level of confidence in that code changes do not break
the ability to collect measurements, and thus still renders such a test suite to be
beneficial.

While the check and installcheckMakefile targets outlined in Sections 3.1
and 3.2 are already triggered by our GitLab CI/CD setup, the Scalasca Test Suite
still has to be run manually. Instead, it would be desirable to run it automatically
on a regular basis, for example, as a scheduled pipeline once per night or on each
weekend—depending on the average code-change frequency of the project—using
the last successful build of the main development branch. Likewise, this also applies
to tests for other projects that are not integrated into the build process, such as the
yet-to-be-written Score-P Test Suite mentioned above.

4 Conclusion and Outlook

In this article, we have presented an overview of the evolution of our approaches
regarding continuous builds and delivery as well as automated testing in the context
of the Score-P, Scalasca, Cube, OTF2, and OPARI2 projects. We have described
the main challenges we encountered along the way, outlined our current solutions,
and discussed issues that still need to be addressed. The automated approaches have
proven beneficial to identify a multitude of functional and portability issues early
on, way before our software packages were made available to our user community.
Although our implementations are clearly geared toward our needs for testing per-
formance analysis tools and the underlying libraries and components, we believe
that the general approaches are also applicable for testing other HPC-related soft-
ware, such as scientific codes.

In the future, we plan to address the open issues outlined in Sections 2.3 and 3.5.
As a short-term goal, we will work toward extending our GitLab CI/CD setup to au-
tomatically trigger the execution of the Scalasca Test Suite in regular intervals using
the latest successfully built Scalasca package. In addition, we plan to explore the
use of containerized build environments, a prerequisite for dealing with the security
implications of the envisioned migration of our source codes to (potentially public)
git repositories and contributions from external, untrusted sources. In the medium
term, we plan to implement a test suite for Score-P to carry out functional tests,
similar in spirit to the Scalasca Test Suite. As a continuous and long-term effort, we
will of course also develop new systematic test cases to increase the coverage of our
testing.

22 C. Feld et al.

References

1. Boost C++ libraries. https://www.boost.org/. Last access: 2018-08-14.
2. CATCH2. https://github.com/catchorg/Catch2. Last access: 2018-08-14.
3. CppUnit – C++ port of JUnit. https://sourceforge.net/projects/cppunit/.

Last access: 2018-08-14.
4. CppUnitLite. http://wiki.c2.com/?CppUnitLite. Last access: 2018-12-05.
5. CxxTest. https://cxxtest.com/. Last access: 2018-08-14.
6. Docker. https://www.docker.com/. Last access: 2018-09-06.
7. Doxygen – Generate documentation from source code. http://www.doxygen.nl/.

Last access: 2018-11-28.
8. FRUCTOSE. https://sourceforge.net/projects/fructose/.

Last access: 2018-08-14.
9. GitHub. https://github.com/. Last access: 2018-11-26.

10. GitLab Continuous Integration and Delivery.
https://about.gitlab.com/product/continuous-integration/.
Last access: 2018-11-26.

11. Jenkins. https://jenkins.io/. Last access: 2018-11-26.
12. JUBE Benchmarking Environment website.

http://www.fz-juelich.de/jsc/jube/. Last access: 2018-11-23.
13. Performance Optimisation and Productivity: A Centre of Excellence in HPC.

https://pop-coe.eu/. Last access: 2018-12-07.
14. Travis CI. https://travis-ci.org/. Last access: 2018-11-26.
15. UnitTest++. https://github.com/unittest-cpp/unittest-cpp/.

Last access: 2018-08-14.
16. Mark J. Abraham, Adrien S. J. Melquiond, Emiliano Ippoliti, Vytautas Gapsys, Berk Hess,

Mikael Trellet, Joo P. G. L. M. Rodrigues, Erwin Laure, Rossen Apostolov, Bert L. de Groot,
Alexandre M. J. J. Bonvin, and Erik Lindahl. BioExcel Whitepaper on Scientific Software
Development, March 2018. https://doi.org/10.5281/zenodo.1194634.

17. Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace Change (2nd
Edition). Addison-Wesley Professional, 2004.

18. Daniel Becker, Markus Geimer, Rolf Rabenseifner, and Felix Wolf. Extending the scope of
the controlled logical clock. Cluster Computing, 16(1):171–189, March 2013.

19. John Calcote. Autotools: A Practioner’s Guide to GNU Autoconf, Automake, and Libtool. No
Starch Press, San Francisco, CA, USA, 1st edition, 2010.

20. Jeff Carver. ICSE Workshop on Software Engineering for Computational Science and Engi-
neering (SECSE 2009). IEEE Computer Society.

21. A. Dubey, K. Antypas, A. Calder, B. Fryxell, D. Lamb, P. Ricker, L. Reid, K. Riley, R. Rosner,
A. Siegel, F. Timmes, N. Vladimirova, and K. Weide. The software development process of
FLASH, a multiphysics simulation code. In 2013 5th International Workshop on Software
Engineering for Computational Science and Engineering (SE-CSE), pages 1–8, May 2013.

22. Alejandro Duran, Xavier Teruel, Roger Ferrer, Xavier Martorell, and Eduard Ayguade.
Barcelona OpenMP Tasks Suite: A set of benchmarks targeting the exploitation of task paral-
lelism in OpenMP. In Proceedings of the 2009 International Conference on Parallel Process-
ing, ICPP ’09, pages 124–131, Washington, DC, USA, 2009. IEEE Computer Society.

23. Edgewall Software. Bitten – A continuous integration plugin for Trac.
https://bitten.edgewall.org/. Last access: 2018-08-14.

24. Edgewall Software. trac – Integrated SCM & Project Management.
https://trac.edgewall.org/. Last access: 2018-08-14.

25. Dominic Eschweiler, Michael Wagner, Markus Geimer, Andreas Knüpfer, Wolfgang E. Nagel,
and Felix Wolf. Open Trace Format 2 - The next generation of scalable trace formats and
support libraries. In Proc. of the Intl. Conference on Parallel Computing (ParCo), Ghent,
Belgium, August 30 – September 2 2011, volume 22 of Advances in Parallel Computing, pages
481–490. IOS Press, 2012.

Detecting disaster before it strikes 23

26. FLEUR Developers. FLEUR GitLab pipelines.
https://iffgit.fz-juelich.de/fleur/fleur/pipelines.
Last access: 2018-11-29.

27. Markus Geimer, Felix Wolf, Brian J. N. Wylie, Erika Ábrahám, Daniel Becker, and Bernd
Mohr. The SCALASCA performance toolset architecture. In International Workshop on
Scalable Tools for High-End Computing (STHEC), Kos, Greece, pages 51–65, June 2008.

28. Michael Gerndt, Bernd Mohr, and Jesper Larsson Träff. A test suite for parallel performance
analysis tools. Concurrency and Computation: Practice and Experience, 19(11):1465–1480,
August 2007.

29. Google, Inc. Google Test. https://github.com/google/googletest.
Last access: 2018-08-08.

30. Daniel Hook and Diane Kelly. Testing for trustworthiness in scientific software. In Pro-
ceedings of the 2009 ICSE Workshop on Software Engineering for Computational Science
and Engineering, SECSE ’09, pages 59–64, Washington, DC, USA, 2009. IEEE Computer
Society.

31. Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases Through
Build, Test, and Deployment Automation. Addison-Wesley Professional, 1st edition, 2010.

32. Vasileios Karakasis, Victor Holanda Rusu, Andreas Jocksch, Jean-Guillaume Piccinali, and
Guilherme Peretti-Pezzi. A regression framework for checking the health of large HPC sys-
tems. In Proceedings of the Cray User Group Conference, 2017.

33. Diane Kelly and Rebecca Sanders. Assessing the Quality of Scientific Software. In First
International Workshop on Software Engineering for Computational Science and Engineering,
Leipzig, Germany, May 2008.

34. Diane Kelly, Spencer Smith, and Nicholas Meng. Software engineering for scientists. Com-
puting in Science and Engineering, 13(5):7–11, 2011.

35. Andreas Knüpfer, Christian Rössel, Dieter an Mey, Scott Biersdorff, Kai Diethelm, Dominic
Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen D. Malony, Wolfgang E.
Nagel, Yury Oleynik, Peter Philippen, Pavel Saviankou, Dirk Schmidl, Sameer S. Shende,
Ronny Tschüter, Michael Wagner, Bert Wesarg, and Felix Wolf. Score-P – A joint perfor-
mance measurement run-time infrastructure for Periscope, Scalasca, TAU, and Vampir. In
Proc. of the 5th Int’l Workshop on Parallel Tools for High Performance Computing, Septem-
ber 2011, Dresden, pages 79–91. Springer, September 2012.

36. Sebastian Lührs, Daniel Rohe, Alexander Schnurpfeil, Kay Thust, and Wolfgang Frings. Flex-
ible and Generic Workflow Management. In Parallel Computing: On the Road to Exascale,
volume 27 of Advances in Parallel Computing, pages 431–438, Amsterdam, Sep 2016. IOS
Press.

37. NASA Advanced Supercomputing Division. NAS Parallel Benchmarks.
https://www.nas.nasa.gov/publications/npb.html.
Last access: 2018-11-25.

38. NEST Initiative. NEST developer space: Continuous integration.
http://nest.github.io/nest-simulator/continuous_integration.
Last access: 2018-08-08.

39. Szilárd Páll, Mark James Abraham, Carsten Kutzner, Berk Hess, and Erik Lindahl. Tackling
Exascale software challenges in molecular dynamics simulations with GROMACS. In Solving
Software Challenges for Exascale, volume 8759 of LNCS, pages 3–27. Springer, 2015.

40. D. E. Post and R. P. Kendall. Software Project Management and Quality Engineering Practices
for Complex, Coupled Multiphysics, Massively Parallel Computational Simulations: Lessons
Learned From ASCI. The International Journal of High Performance Computing Applica-
tions, 18(4):399–416, November 2004.

41. Pavel Saviankou, Michael Knobloch, Anke Visser, and Bernd Mohr. Cube v4: From per-
formance report explorer to performance analysis tool. In Proceedings of the International
Conference on Computational Science, ICCS 2015, Computational Science at the Gates of
Nature, Reykjavı́k, Iceland, 1-3 June, 2015, pages 1343–1352, 2015.

42. Michael G. Schwern and Andy Lester. Test Anything Protocol.
https://testanything.org/. Last access: 2018-08-08.

24 C. Feld et al.

43. Gary V. Vaughan, Ben Elliston, Tom Tromey, and Ian Lance Taylor. The Goat Book. New
Riders, 2000.

44. Ilya Zhukov, Christian Feld, Markus Geimer, Michael Knobloch, Bernd Mohr, and Pavel Sa-
viankou. Scalasca v2: Back to the future. In Proc. of Tools for High Performance Computing
2014, pages 1–24. Springer, 2015.

