000892909 001__ 892909
000892909 005__ 20240711092309.0
000892909 0247_ $$2doi$$a10.1557/s43578-021-00221-6
000892909 0247_ $$2ISSN$$a0884-1616
000892909 0247_ $$2ISSN$$a0884-2914
000892909 0247_ $$2ISSN$$a2044-5326
000892909 0247_ $$2Handle$$a2128/28309
000892909 0247_ $$2WOS$$aWOS:000649405700001
000892909 037__ $$aFZJ-2021-02433
000892909 082__ $$a670
000892909 1001_ $$0P:(DE-Juel1)164873$$aWang, Jin$$b0$$ufzj
000892909 245__ $$aThe indentation size effect of single-crystalline tungsten revisited
000892909 260__ $$aCambridge [u.a.]$$bCambridge Univ. Press$$c2021
000892909 3367_ $$2DRIVER$$aarticle
000892909 3367_ $$2DataCite$$aOutput Types/Journal article
000892909 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714644245_25204
000892909 3367_ $$2BibTeX$$aARTICLE
000892909 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892909 3367_ $$00$$2EndNote$$aJournal Article
000892909 520__ $$aIn this study, we have investigated the indentation size effect (ISE) of single crystalline tungsten with low defect density. As expected, the hardness shows a pronounced increase with decreasing indentation depth as well as a strong strain rate dependence. For penetration depths greater than about 300 nm, the ISE is well captured by the Nix–Gao model in the context of geometrically necessary dislocations. However, clear deviations from the model are observed in the low depth regime resulting in a bilinear effect. The hardness behavior in the low depth regime can be modeled assuming a non-uniform spacing of the geometrically necessary dislocations. We propose that the bilinear indentation size effect observed reflects the evolution of the geometrically necessary dislocation density. With increasing strain rate, the bilinear effect becomes less pronounced. This observation can be rationalized by the activation of different slip systems.
000892909 536__ $$0G:(DE-HGF)POF4-1241$$a1241 - Gas turbines (POF4-124)$$cPOF4-124$$fPOF IV$$x0
000892909 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892909 7001_ $$0P:(DE-HGF)0$$aVolz, Tillmann$$b1
000892909 7001_ $$0P:(DE-HGF)0$$aWeygand, Sabine M.$$b2
000892909 7001_ $$0P:(DE-Juel1)179598$$aSchwaiger, Ruth$$b3$$eCorresponding author
000892909 773__ $$0PERI:(DE-600)2015297-8$$a10.1557/s43578-021-00221-6$$p2166-2175$$tJournal of materials research$$v36$$x2044-5326$$y2021
000892909 8564_ $$uhttps://juser.fz-juelich.de/record/892909/files/Wang2021_Article_TheIndentationSizeEffectOfSing.pdf$$yOpenAccess
000892909 8767_ $$d2021-05-31$$eHybrid-OA$$jDEAL$$lDEAL: Springer
000892909 909CO $$ooai:juser.fz-juelich.de:892909$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000892909 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164873$$aForschungszentrum Jülich$$b0$$kFZJ
000892909 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179598$$aForschungszentrum Jülich$$b3$$kFZJ
000892909 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1241$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x0
000892909 9130_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000892909 9141_ $$y2021
000892909 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000892909 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000892909 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000892909 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
000892909 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000892909 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-02-03
000892909 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000892909 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892909 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER RES : 2019$$d2021-02-03
000892909 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000892909 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000892909 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000892909 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2021-02-03$$wger
000892909 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000892909 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-02-03
000892909 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000892909 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-03$$wger
000892909 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000892909 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000892909 9801_ $$aAPC
000892909 9801_ $$aFullTexts
000892909 980__ $$ajournal
000892909 980__ $$aVDB
000892909 980__ $$aI:(DE-Juel1)IEK-2-20101013
000892909 980__ $$aAPC
000892909 980__ $$aUNRESTRICTED
000892909 981__ $$aI:(DE-Juel1)IMD-1-20101013