001     892909
005     20240711092309.0
024 7 _ |a 10.1557/s43578-021-00221-6
|2 doi
024 7 _ |a 0884-1616
|2 ISSN
024 7 _ |a 0884-2914
|2 ISSN
024 7 _ |a 2044-5326
|2 ISSN
024 7 _ |a 2128/28309
|2 Handle
024 7 _ |a WOS:000649405700001
|2 WOS
037 _ _ |a FZJ-2021-02433
082 _ _ |a 670
100 1 _ |a Wang, Jin
|0 P:(DE-Juel1)164873
|b 0
|u fzj
245 _ _ |a The indentation size effect of single-crystalline tungsten revisited
260 _ _ |a Cambridge [u.a.]
|c 2021
|b Cambridge Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714644245_25204
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this study, we have investigated the indentation size effect (ISE) of single crystalline tungsten with low defect density. As expected, the hardness shows a pronounced increase with decreasing indentation depth as well as a strong strain rate dependence. For penetration depths greater than about 300 nm, the ISE is well captured by the Nix–Gao model in the context of geometrically necessary dislocations. However, clear deviations from the model are observed in the low depth regime resulting in a bilinear effect. The hardness behavior in the low depth regime can be modeled assuming a non-uniform spacing of the geometrically necessary dislocations. We propose that the bilinear indentation size effect observed reflects the evolution of the geometrically necessary dislocation density. With increasing strain rate, the bilinear effect becomes less pronounced. This observation can be rationalized by the activation of different slip systems.
536 _ _ |a 1241 - Gas turbines (POF4-124)
|0 G:(DE-HGF)POF4-1241
|c POF4-124
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Volz, Tillmann
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Weygand, Sabine M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schwaiger, Ruth
|0 P:(DE-Juel1)179598
|b 3
|e Corresponding author
773 _ _ |a 10.1557/s43578-021-00221-6
|0 PERI:(DE-600)2015297-8
|p 2166-2175
|t Journal of materials research
|v 36
|y 2021
|x 2044-5326
856 4 _ |u https://juser.fz-juelich.de/record/892909/files/Wang2021_Article_TheIndentationSizeEffectOfSing.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:892909
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)164873
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)179598
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-124
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Hochtemperaturtechnologien
|9 G:(DE-HGF)POF4-1241
|x 0
913 0 _ |a DE-HGF
|b Energie
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Methods and Concepts for Material Development
|x 0
914 1 _ |y 2021
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DEAL: Springer Nature 2020
|0 PC:(DE-HGF)0113
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-02-03
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER RES : 2019
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-03
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-03
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-03
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21