000892966 001__ 892966
000892966 005__ 20240711085549.0
000892966 0247_ $$2doi$$a10.1016/j.actamat.2021.117007
000892966 0247_ $$2ISSN$$a1359-6454
000892966 0247_ $$2ISSN$$a1873-2453
000892966 0247_ $$2Handle$$a2128/27909
000892966 0247_ $$2altmetric$$aaltmetric:107238162
000892966 0247_ $$2WOS$$aWOS:000663791200010
000892966 037__ $$aFZJ-2021-02465
000892966 082__ $$a670
000892966 1001_ $$0P:(DE-Juel1)136812$$aBakan, Emine$$b0$$eCorresponding author
000892966 245__ $$aMicrostructure and Phase Composition Evolution of Silicon-Hafnia Feedstock during Plasma Spraying and Following Cyclic Oxidation
000892966 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000892966 3367_ $$2DRIVER$$aarticle
000892966 3367_ $$2DataCite$$aOutput Types/Journal article
000892966 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1623059892_20313
000892966 3367_ $$2BibTeX$$aARTICLE
000892966 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892966 3367_ $$00$$2EndNote$$aJournal Article
000892966 520__ $$aIn this work, silicon–hafnia (Si-HfO2, 80/20 mol. %) feedstock was plasma sprayed for Environmental Barrier Coating bond coat application. In the as-sprayed coating, hafnium disilicide (HfSi2), HfO2 tetragonal (t), and cubic (c) phases with a total volume of ~20 % were detected together with Si and HfO2 monoclinic (m). The temperature-dependent evolution of these phases was analyzed and paired with microstructural observations. It was found that above 700 °C, HfSi2 oxidizes and HfO2 (t) and (c) transforms into (m) polymorph. Up to this temperature, as-sprayed coating showed a non-linear expansion behavior. Estimated volume expansion at ~750 °C was 3.6 % based on dilatometry measurement. The primary and secondary mechanisms leading to the expansion in the coating were identified as oxidation of HfSi2 and polymorphic phase transitions in HfO2, respectively. As a consequence of the volume expansion, the coating was extensively cracked during cyclic oxidation and hence not protective anymore. After 100 h at 1300 °C, the volume fraction of oxidation product SiO2 was significant in the coating (0.34), while HfO2 was largely consumed (0.1) in the formation of HfSiO4 (0.56). This result suggested that reversible α↔β phase transitions in SiO2-cristobalite could be another factor contributing to the cracking in the coating during cyclic oxidation.
000892966 536__ $$0G:(DE-HGF)POF4-124$$a124 - Hochtemperaturtechnologien (POF4-124)$$cPOF4-124$$fPOF IV$$x0
000892966 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892966 7001_ $$0P:(DE-Juel1)159368$$aSohn, Yoo Jung$$b1$$ufzj
000892966 7001_ $$0P:(DE-Juel1)129670$$aVaßen, Robert$$b2$$ufzj
000892966 773__ $$0PERI:(DE-600)2014621-8$$a10.1016/j.actamat.2021.117007$$gp. 117007 -$$p117007 -$$tActa materialia$$v214$$x1359-6454$$y2021
000892966 8564_ $$uhttps://juser.fz-juelich.de/record/892966/files/Bakan_Acta%20Mater_2021-1.pdf$$yRestricted
000892966 8564_ $$uhttps://juser.fz-juelich.de/record/892966/files/post%20referee%20draft_Bakan_2021_Acta%20Mater.pdf$$yPublished on 2021-05-21. Available in OpenAccess from 2022-05-21.
000892966 909CO $$ooai:juser.fz-juelich.de:892966$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000892966 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136812$$aForschungszentrum Jülich$$b0$$kFZJ
000892966 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159368$$aForschungszentrum Jülich$$b1$$kFZJ
000892966 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b2$$kFZJ
000892966 9130_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000892966 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x0
000892966 9141_ $$y2021
000892966 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000892966 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000892966 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-28
000892966 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-28
000892966 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000892966 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000892966 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000892966 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACTA MATER : 2019$$d2021-01-28
000892966 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000892966 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-28
000892966 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA MATER : 2019$$d2021-01-28
000892966 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000892966 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000892966 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000892966 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000892966 9801_ $$aFullTexts
000892966 980__ $$ajournal
000892966 980__ $$aVDB
000892966 980__ $$aUNRESTRICTED
000892966 980__ $$aI:(DE-Juel1)IEK-1-20101013
000892966 981__ $$aI:(DE-Juel1)IMD-2-20101013
000892966 981__ $$aI:(DE-Juel1)IMD-2-20101013