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Abstract
It has already been proposed that a combined use of different molecular and mor-
phological markers of aging in multivariate models may result in a greater accuracy of 
age estimation. However, such an approach can be complex and expensive, and not 
every combination may be useful. The significance and usefulness of combined analy-
ses of D-aspartic acid in dentine, pentosidine in dentine, DNA methylation in buccal 
swabs at five genomic regions (PDE4C, RPA2, ELOVL2, DDO, and EDARADD), and third 
molar mineralization were tested by investigating a sample of 90 oral surgery pa-
tients. Machine learning models for age estimation were trained and evaluated, and 
the contribution of each parameter to multivariate models was tested by assessment 
of the predictor importance. For models based on D-aspartic acid, pentosidine, and 
the combination of both, mean absolute errors (MAEs) of 2.93, 3.41, and 2.68 years 
were calculated, respectively. The additional inclusion of the five DNAm markers did 
not improve the results. The sole DNAm-based model revealed a MAE of 4.14 years. 
In individuals under 28  years of age, the combination of the DNAm markers with 
the third molar mineralization stages reduced the MAE from 3.85 to 2.81 years. Our 
findings confirm that the combination of parameters in multivariate models may be 
very useful for age estimation. However, the inclusion of many parameters does not 
necessarily lead to better results. It is a task for future research to identify the best 
selection of parameters for the different requirements in forensic practice.
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1  |  INTRODUC TION

Methods for forensic age estimation are based on the evaluation of 
age-related alterations of the human organism. Classical approaches 
use morphological changes especially of teeth and the skeleton [1,2]. 
In the last decade, molecular approaches found their way into the 
methodological repertoire [3]. They are based on molecular modi-
fications that accumulate with age and exhibit a close correlation 
with chronological age. Such alterations are the methylation of DNA 
(DNAm, [4–6]) as well as the accumulation of D-aspartic acid (D-Asp) 
and pentosidine (Pen) in permanent proteins [7–13].

Age-dependent DNAm patterns are the subject of intense re-
search, and several models for the estimation of chronological age 
have been established (e.g., [14–20]). An important advantage of this 
approach is a broad (and in case of buccal swabs also noninvasive) 
applicability to diverse tissues [15]. Though the reported mean ab-
solute deviations (MADs) for the currently best models are in the 
range of approximately 2–4 years [5,15–19,21], substantial errors in 
single cases have to be taken into account, especially in older ages 
[16,17,19].

Age estimation based on D-Asp in dentine is one of the most 
accurate methods for age estimation in adults, and the reported data 
reveal MADs of 0.72–3.4 [22–25]. This approach can also be applied 
to tissues more complex than dentine (e.g., epiglottis, bone, and in-
tervertebral disks [26–28]), which, however, results in a significantly 
lower accuracy of age estimation [26,29,30].

Pen is an advanced glycation end product and accumulates with 
increasing age in long-living proteins [10–12]. The relationship be-
tween the Pen content of dentine and age is close [13], but signifi-
cantly less close than the one between the D-Asp content of dentine 
and age.

Each of the approaches outlined above has its limitations, and 
most of these limitations are consequences of the complexity and 
variability of the aging process. Accordingly, one of the main prob-
lems of all methods of age estimation is an increasing scattering of 
data with increasing age. It has already been proposed that a com-
bined use of different molecular and morphological markers may 
better address the complexity of aging and result in a higher accu-
racy of age estimation, especially in older ages [28,31].

However, molecular analyses for age estimation are demanding, 
the combined use of different approaches can be expensive, and not 
every combination may be useful. Thus, it would be important to 

know which combinations of markers actually offer significantly bet-
ter results in defined case constellations of forensic practice.

So far, we do not know which combinations of D-Asp, Pen, DNAm, and 
morphological findings in multivariate models are useful. We approached 
this question by analyzing molecular and morphological parameters in 
parallel and investigated the significance of each parameter in multivariate 
models for age estimation. For ethical reasons, the investigation of a sample 
of oral surgery patients was the only possibility to get access to teeth (for 
the analysis of D-Asp and Pen), to buccal swabs (for the analysis of 5 DNAm 
markers), and as well to orthopantomograms (OPTGs, for the morphologi-
cal staging of the tooth mineralization). The over-representation of younger 
ages in this group of patients could be accepted, since it was not our aim to 
develop new models for age estimation or to compare different methods, 
but to learn—in the sense of basic research—which of the analyzed param-
eters (D-Asp, Pen, 5 DNAm markers, tooth mineralization) may contribute 
to multivariate models of age estimation to which extent and which combi-
nations of markers offer added value.

2  |  MATERIAL S AND METHODS

For 90 oral surgery patients, the following parameters were 
investigated:

•	 Stages of the tooth mineralization (third molars),
•	 DNA methylation at CG dinucleotides (CpGs) within the genes 

PDE4C, RPA2, ELOVL2, DDO, and EDARADD,
•	 D-aspartic acid content (D-Asp),
•	 Pentosidine content (Pen).

Based on these parameters, multivariate models for age estima-
tion were developed and the impact of each parameter on the mod-
els was determined.

2.1  |  Patients and material

90 patients (with known ages between 10.2 and 79.5 years) from the 
dental clinic of the University of Düsseldorf were included in the study 
after written consent. As far as possible, OPTGs, buccal swabs, and ex-
tracted teeth were collected from each patient. Table 1 gives an over-
view over the available material. The included extracted teeth were free 

Highlights

•	 The combined use of different markers of aging in multivariate models may improve age 
estimation.

•	 Molecular markers (DNAm, D-aspartic acid, pentosidine) as well as morphological markers 
are promising candidates for such models.

•	 The most relevant features of multivariate models can be assessed by the predictor 
importance.

•	 Future research should identify the optimal combinations of markers for specific applications.
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of caries and free of fillings, root canal treatments, and crowns. Patients 
with known diabetes mellitus were excluded from the study.

2.2  |  Staging of tooth mineralization

As morphological parameter to be included into the multivariate 
models, we chose the third molar mineralization (categorized by the 
Demirjian stages A–H [32]), since the mineralization of the third mo-
lars covers a broad age range that is of particular importance for 
age estimation in living persons (e.g., criminal responsibility, age of 
majority). Due to the proof-of-concept design of our study, we did 
not include the mineralization of other teeth. The stages were not 
used for a classical morphological age estimation, but as such (A-H) 
directly introduced into the multivariate models.

In this context, staging of tooth mineralization appeared only use-
ful as long as tooth maturation is not yet completed. According to the 
data of Olze et al. [33], the development of third molars in the German 
population should be completed no later than the age of approxi-
mately 28.5 years (23.1 ± 1.8 years, considering a threefold standard 
deviation). Therefore, we staged the third molar mineralization only in 
a subsample of 69 individuals younger than 28 years (10.2–27.5 years).

The degree of tooth mineralization was categorized into eight 
stages (A–H), as described by Demirjian et al. [32].

The classification was carried out independently by two expe-
rienced forensic scientists. In case of deviating results, the x-ray 
image was reviewed and the stages were categorized after reaching 
consensus.

2.3  |  D-aspartic acid content in dentine

Dentine samples from 66 teeth from patients with ages between 12.7 
and 79.5 years were analyzed according to Ritz-Timme [34], in brief:

Crown and apical third of the root were cut off with a water-
cooled diamond drill, and cement and pulp tissue were removed. The 
remaining root was washed, and the samples were lyophilized and 
crushed in a hydraulic press. The resulting powder was stored by 
−20°C until further analysis. 10 mg of dentine powder was hydro-
lyzed for 6 h with 1 ml 6 N HCl at 100°C. After drying, the samples 
were derivatized as described. The D- and L-aspartic acid contents 
were finally analyzed by gas chromatography (GC-2014 Shimadzu; 
flame ionization detector), using a chiral capillary column (Chirasil-L-
Val, Chrompack, Frankfurt).

2.4  |  Pentosidine content in dentine

Analyses were performed in dentine from 66 teeth from patients 
with ages between 12.7 and 79.5 years according to Odetti et al. [35] 
and modified by Greis et al. [13], in brief: 50 mg tooth powder was 
hydrolyzed with 1 ml 6 N HCl at 110°C for 18 h. After drying, 1 ml 
0.01 M heptafluorobutyric acid (HFBA) was added. The solution was 
filtered through syringe filters (Ø 25 mm, 0.45 µm pore diameter) 
and dried again. The samples were dissolved in 350 µl pyridoxine-
HFBA and analyzed by high-performance liquid chromatography 
(HPLC) as described.

2.5  |  DNA methylation

The DNAm markers in ELOVL2, DDO, RPA2, PDE4C, and EDARADD 
(Table 2) were analyzed in 88 buccal swabs from patients with ages 
between 10.2 and 79.5 years.

DNA was extracted using the NucleoSpin® Tissue Kit from 
Macherey-Nagel. The extraction was performed according to the 
standard protocol for human tissue with 3-h lysis at 56°C in a shak-
ing thermal block (ThermoMixer® C, Eppendorf). DNA was eluted in 
100 µl BE buffer. DNA extracts were stored at −20°C. Quantitation 
was performed using the Quantiplex® Pro Kit (Qiagen) and the 
Applied Biosystems™ 7500 Real-Time PCR System following the 
manufacturer's instructions with default settings. Bisulfite con-
version was performed using the EZ DNA Methylation-Gold™ Kit 
(Zymo Research) following the manufacturer's instructions. If pos-
sible, the recommended amount of 200–500 ng DNA was applied. 
Bisulfite-converted DNA was amplified using the PyroMark PCR 
Kit (Qiagen) with the respective primers under the manufacturer's 

TA B L E  1  Number of samples (all age-groups and individuals with 
ages under 28 years)

All ages
Ages under 
28 years

Teeth 66 (from 52 
patients)

46 (from 37 
patients)

Buccal swabs 88 71

Radiographs (OPTGs) 82 69

Gene ID
CpG 
Number CpG ID Position Reference

ELOVL2 6 cg16867657 chr.6:11044877 Naue et al. [15]

RPA2 3 cg25410668 chr.1:28241577 Naue et al. [15]

DDO 1 cg02872426 chr.6:110736772 Naue et al. [15]

EDARADD 2 cg09809672 chr1:236557683 Baekert et al. [16]

PDE4C 1 cg17861230 chr19:18233127 Weidner et al. [17]

TA B L E  2  Analyzed CpGs with CpG 
number, CpG ID, position, and reference
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conditions for bisulfite-converted DNA: 95°C, 15  min; 45× cy-
cles (94°C, 30 s; 56°C, 30 s; 72°C, 30 s); 72°C, 10 min; 4°C, hold. 
Primer sequences were taken from the original papers (Table 2). For 
the subsequent pyrosequencing analysis, 10–20  µl of biotinylated 
PCR product was immobilized to 1 μl Streptavidin Sepharose™ HP 
beads (GE Healthcare). The sequencing primers were designed as 
previously described [15–17]. Pyrosequencing was performed using 
the PyroMark Q24 Advanced CpG Reagents Kit (Qiagen) and the 
PyroMark Q24 Advanced System (Qiagen).

2.6  |  Statistical evaluation

Uni- and multivariate models for age estimation were developed, and 
the impact of each parameter (tooth mineralization stages, D-Asp, 
Pen, and DNAm markers) for the multivariate models was tested. 
Univariate models were only developed for the molecular methods.

Prediction of individual age was performed using random forests, 
that is, an ensemble of decision trees. We repeatedly drew subsamples 
of subjects from the training set and estimated the optimal decision 
tree on this reduced number of subjects. These were then combined 
into a final prediction allowing to obtain better performance than ob-
tainable from any of the constituent predictors by itself. In practice, 
we repeatedly sampled 85% of the training cases (with replacement).

For each run, we trained a decision tree using the CART algo-
rithm to identify the best non-linear combination of rules in the 
training set to estimate age based on the respective features. As 
noted above, training was repeatedly performed on a subset of the 
training cases, yielding “weak learners” that were later combined to 
achieve the final prediction. Here we employed the “TreeBagger” 
in the MATLAB “statistics and machine learning toolbox” (Number 
of trees: 25.000, Minimum Leaf Size: 1, Predictors to sample: all, 
Surrogate Splits: on, Predictor Selection: Interaction-Curvature).

Each of these models based on a subset of the training subjects 
was then applied to predict the age of a held out, “new” subject, that 
is, a case that was not part of the training set. Technically, this was 
achieved by out-of-bag prediction. That is, each subject's prediction 
was based on only those trees that were constructed from subsa-
mples that did not include this particular individual. This approach 
yielded an out-of-sample prediction of the age for each subject in 
the current sample that did not use any information about that par-
ticular person when training the model.

As a measure of prediction accuracy, we computed the mean ab-
solute error (MAE). We then computed the mean (averaged across 
subjects) absolute differences between the predicted and the true 
chronological age for each subject. In addition, we also computed 
the Pearson (linear) correlation coefficient between the true chrono-
logical age and the predicted age. These analyses were performed 
for all age-groups as well as for the subgroup of individuals with ages 
under 28 years.

Finally, to identify the most relevant features of each model, we 
assessed the predictor importance. These are estimates by a permu-
tation measure reflecting how influential a variable is for predicting 

the response. If a predictor is influential, then permuting its values 
should affect the model error. If a predictor is not influential, then 
permuting its values should have little to no effect on the model 
error. The normalized predictor importance, reflecting the increase 
in model loss by permuting this predictor, hence corresponds to the 
relevance of the respective feature.

3  |  RESULTS

3.1  |  Univariate models for molecular methods

Among the univariate models for the molecular methods, the pro-
tein markers (D-Asp, Pen) exhibited the highest correlations (r = 0.96 
and 0.94, respectively) and the lowest MAEs (2.93 and 3.41 years; 
2.25 and 2.87 years in individuals under ages of 28 years, Figure 1, 
Table 3).

The DNAm marker DDO exhibited very poor results (r = 0.31, 
MAE = 24.74 years, Figure 1), also in the age-group of under 28 years 
(r  =  0.2; MAE  =  16.44, Table 3). The other DNAm markers deliv-
ered much better results (r  =  0.71–0.81, MAE  =  5.87–7.08  years; 
r = 0.3–0.43, MAE = 7.18–10.52 years in individuals with ages under 
28 years, Figure 1, Table 3).

3.2  |  Multivariate models

3.2.1  |  D-Asp & Pen

The combination of the two protein markers (D-Asp and Pen) re-
sulted in a slightly lower MAE (2.68, 1.96 years in individuals with 
ages under 28 years, Figure 2, Table 4) compared to the univariate 
D-Asp model (2.93, 2.25 years, Table 3, respectively). Both param-
eters were equally important for the model, and only in the group of 
individuals with ages under 28 years, D-Asp was slightly more impor-
tant (Figure 2).

3.2.2  |  D-Asp & Pen & DNAm (5 markers)

The model comprising the two protein markers and all DNAm mark-
ers delivered less precise results (MAE = 3.52 years, 2.98 years in 
individuals with ages under 28 years) than the model based solely on 
the two protein markers; the protein markers were most important 
for this model (Figure 2, Table 4).

3.2.3  |  DNAm based on the combination of 
five CpGs

A model based solely on the five DNAm markers resulted in a MAE of 
4.14 years (3.85 years in individuals under 28 years of age). The most 
important markers in our model were RPA2, EDARADD, and PDE4C. 
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DDO played a relevant role only in individuals under 28 years of age 
(Figure 2, Table 4).

3.2.4  |  DNAm & third molar mineralization

A combination of the third molar mineralization stages with all 
DNAm markers resulted in an improvement of the sole DNAm model 

(MAE = 2.81 years vs. 3.85 years for individuals under 28 years). Tooth 
mineralization was most important for the model (Figure 2, Table 4).

4  |  DISCUSSION

It was not the aim of this study to develop a “ready to use” model for 
age estimation or to compare different methodological approaches, 

F I G U R E  1  Age estimation by univariate models based on the protein markers D-Asp (A) and Pen (B) and on the DNAm at CpGs in 
the genes RPA2 (C), EDARADD (D), ELOVL2 (E), PDE4C (F), and DDO (G): Predicted ages plotted against chronological ages (r, correlation 
coefficient, MAE, mean absolute error in years). The line marks the theoretical position of values in case of identity of estimated and 
chronological age [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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but to explore which parameters may contribute to multivariate 
models of age estimation to which extent and which combination of 
markers may be promising.

To investigate, which significance DNAm, D-Asp, Pen, and 
tooth mineralization stages may have in multivariate models and 
which combinations of markers offer added value, we analyzed 
these parameters in parallel, derived diverse multivariate mod-
els for age estimation, and identified the most relevant features 
of each model by assessment of the predictor importance. The 
choice of the patient sample (oral surgery clinic) enabled the anal-
ysis of several molecular and morphologic parameters in every 
single individual, since OPTGs, buccal swabs, and extracted teeth 
were available. However, the choice of this sample was associ-
ated with the problem that it consisted mainly of young individ-
uals, and older individuals were under-represented. Despite this 

TA B L E  3  Univariate models: numbers of samples (N), correlation 
coefficients (r), and mean absolute error (MAE, in years) for all age-
groups and for individuals with ages under 28 years

Univariate models

All ages Ages under 28 years

N r MAE N r MAE

D-Asp 66 0.96 2.93 46 0.78 2.25

Pen 66 0.94 3.41 46 0.71 2.87

EDARADD 83 0.74 6.76 68 0.37 8.68

DDO 86 0.31 24.74 70 0.2 16.44

ELOVL2 88 0.71 7.08 71 0.3 10.52

RPA2 88 0.81 5.87 71 0.43 7.18

PDE4C 87 0.79 6.11 70 0.38 7.87

F I G U R E  2  Age estimation by multivariate models based on D-Asp and Pen (A), the DNAm markers PDE4C, RPA2, ELOVL2, DDO, and EDARADD 
for individuals with ages under 28 years (B) and for all age-groups (C), tooth mineralization stages and the DNAm markers PDE4C, RPA2, ELOVL2, 
DDO, and EDARADD for individuals with ages under 28 years (D), and D-Asp, Pen, and the DNAm markers PDE4C, RPA2, ELOVL2, DDO, and 
EDARADD (E): Predicted ages plotted against chronological ages (r, correlation coefficient, MAE, mean absolute error in years) and normalized 
predictor importance estimates. The line marks the theoretical position of values in case of identity of estimated and chronological age [Colour 
figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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limitation, the presented data allow some conclusions regarding 
further strategies for the development of age estimation methods 
for postmortem age estimation as well as for age estimation in 
living individuals.

Postmortem age estimation:

•	 If teeth (dentine) are available, the protein markers D-Asp and Pen 
are very informative for age estimation in adult age. The high po-
tential of age estimation based on D-Asp in dentine has already 
been proven by many groups, by data revealing MADs of 0.72–3.4 
[22–25]. In our explorative study, the additional analysis of age-
associated DNAm changes did not improve the accuracy of age 
predictions.

•	 This does not account for situations in which teeth are not avail-
able. Age estimation based on D-Asp and Pen in other tissues pro-
duces less accurate results, as compared to dentine [26,27,29,30]. 
It has already been shown that the combination of D-Asp and Pen 
data from several complex tissues in multivariate models results in 
a significant improvement of age estimation based on these protein 
markers [28]. The introduction of DNAm markers into such models 
should open new possibilities for a further improvement of post-
mortem age estimation, especially if teeth are not available.

•	 The improvement of age estimation by combining third molar 
mineralization stages with DNAm markers emphasizes the poten-
tial of morphological information in age estimation when included 
in multivariate models. Possibly the information from the tooth 
mineralization stages led to a pre-structuring of data with positive 
effects for age estimation. Similarly, also skeletal findings may add 
a significant contribution to multivariate approaches for postmor-
tem age estimation.

Age estimation in living individuals:

•	 So far, there are only few studies regarding the application of multi-
variate models to age estimation in living persons. However, a com-
bination of morphological findings (skeletal and dental development) 

and DNAm markers in multivariate models has already been pro-
posed for children [31]. This concept has not been tested for adoles-
cents yet. Our data demonstrate an improvement of age estimation 
by combining third molar mineralization stages with DNAm markers 
and therefore seem to support this approach, at least at a first glance. 
However, some samples revealed a high deviation of chronological 
and estimated age. Though the MAE was 2.81 years for the model 
“DNAm & tooth mineralization” (young individuals with ages under 
28 years), substantial errors of up to 15 years in single cases were 
observed (Figure 2). As long as future research cannot eradicate 
such errors, this approach will not be applicable to age estimation in 
living individuals. Still, better results might be obtained by including 
further parameters like information about the skeletal development 
(hand, clavicula) and/or other DNAm markers.

Our findings confirm that the combination of parameters in multi-
variate models may be very useful. However, the combination of numer-
ous parameters does not necessarily lead to better results. It is a task 
for future research to identify the best approach and the best choice of 
parameters for the different requirements in forensic practice.
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