000893031 001__ 893031
000893031 005__ 20240507205534.0
000893031 0247_ $$2doi$$a10.1103/PhysRevResearch.3.023161
000893031 0247_ $$2Handle$$a2128/27962
000893031 0247_ $$2altmetric$$aaltmetric:106868847
000893031 0247_ $$2WOS$$aWOS:000657190400001
000893031 037__ $$aFZJ-2021-02511
000893031 082__ $$a530
000893031 1001_ $$0P:(DE-Juel1)176610$$aKaiser, Franz$$b0$$eCorresponding author
000893031 245__ $$aTopological theory of resilience and failure spreading in flow networks
000893031 260__ $$aCollege Park, MD$$bAPS$$c2021
000893031 3367_ $$2DRIVER$$aarticle
000893031 3367_ $$2DataCite$$aOutput Types/Journal article
000893031 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1715085210_7023
000893031 3367_ $$2BibTeX$$aARTICLE
000893031 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893031 3367_ $$00$$2EndNote$$aJournal Article
000893031 520__ $$aLink failures in supply networks can have catastrophic consequences that can lead to a complete collapse of the network. Strategies to prevent failure spreading are thus heavily sought after. Here, we make use of a spanning tree formulation of link failures in linear flow networks to analyze topological structures that prevent failure spreading. In particular, we exploit a result obtained for resistor networks based on the matrix tree theorem to analyze failure spreading after link failures in power grids. Using a spanning tree formulation of link failures, we analyze three strategies based on the network topology that allow us to reduce the impact of single link failures. All our strategies either do not reduce the grid's ability to transport flow or do in fact improve it - in contrast to traditional containment strategies based on lowering network connectivity. Our results also explain why certain connectivity features completely suppress any failure spreading as reported in recent publications.
000893031 536__ $$0G:(DE-HGF)POF4-111$$a111 - Energiesystemtransformation (POF4-111)$$cPOF4-111$$fPOF IV$$x0
000893031 536__ $$0G:(DE-JUEL1)BMBF-03EK3055B$$aCoNDyNet 2 - Kollektive Nichtlineare Dynamik Komplexer Stromnetze (BMBF-03EK3055B)$$cBMBF-03EK3055B$$x1
000893031 536__ $$0G:(HGF)VH-NG-1025_20112014$$aVH-NG-1025 - Helmholtz Young Investigators Group "Efficiency, Emergence and Economics of future supply networks" (VH-NG-1025_20112014)$$cVH-NG-1025_20112014$$x2
000893031 536__ $$0G:(DE-HGF)ES2050$$aES2050 - Energie System 2050 (ES2050)$$cES2050$$x3
000893031 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893031 7001_ $$0P:(DE-Juel1)162277$$aWitthaut, Dirk$$b1$$ufzj
000893031 773__ $$0PERI:(DE-600)3004165-X$$a10.1103/PhysRevResearch.3.023161$$gVol. 3, no. 2, p. 023161$$n2$$p023161$$tPhysical review research$$v3$$x2643-1564$$y2021
000893031 8564_ $$uhttps://juser.fz-juelich.de/record/893031/files/PhysRevResearch.3.023161.pdf$$yOpenAccess
000893031 8767_ $$8INV/21/MAY/005772$$92021-05-17$$d2021-05-20$$eAPC$$jZahlung erfolgt$$zUSD 1250,- Belegnr. 1200167250
000893031 909CO $$ooai:juser.fz-juelich.de:893031$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000893031 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176610$$aForschungszentrum Jülich$$b0$$kFZJ
000893031 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162277$$aForschungszentrum Jülich$$b1$$kFZJ
000893031 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x0
000893031 9130_ $$0G:(DE-HGF)POF3-153$$1G:(DE-HGF)POF3-150$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lTechnologie, Innovation und Gesellschaft$$vAssessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security$$x0
000893031 9141_ $$y2021
000893031 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893031 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-04
000893031 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000893031 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV RES : 2022$$d2023-10-27
000893031 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
000893031 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
000893031 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-16T10:08:58Z
000893031 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-16T10:08:58Z
000893031 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-08-16T10:08:58Z
000893031 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2022-08-16T10:08:58Z
000893031 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
000893031 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-10-27
000893031 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
000893031 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-27
000893031 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-27
000893031 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-27
000893031 920__ $$lno
000893031 9201_ $$0I:(DE-Juel1)IEK-STE-20101013$$kIEK-STE$$lSystemforschung und Technologische Entwicklung$$x0
000893031 980__ $$ajournal
000893031 980__ $$aVDB
000893031 980__ $$aI:(DE-Juel1)IEK-STE-20101013
000893031 980__ $$aAPC
000893031 980__ $$aUNRESTRICTED
000893031 9801_ $$aAPC
000893031 9801_ $$aFullTexts