| Home > Publications database > Topological theory of resilience and failure spreading in flow networks > print |
| 001 | 893031 | ||
| 005 | 20240507205534.0 | ||
| 024 | 7 | _ | |a 10.1103/PhysRevResearch.3.023161 |2 doi |
| 024 | 7 | _ | |a 2128/27962 |2 Handle |
| 024 | 7 | _ | |a altmetric:106868847 |2 altmetric |
| 024 | 7 | _ | |a WOS:000657190400001 |2 WOS |
| 037 | _ | _ | |a FZJ-2021-02511 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Kaiser, Franz |0 P:(DE-Juel1)176610 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Topological theory of resilience and failure spreading in flow networks |
| 260 | _ | _ | |a College Park, MD |c 2021 |b APS |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1715085210_7023 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Link failures in supply networks can have catastrophic consequences that can lead to a complete collapse of the network. Strategies to prevent failure spreading are thus heavily sought after. Here, we make use of a spanning tree formulation of link failures in linear flow networks to analyze topological structures that prevent failure spreading. In particular, we exploit a result obtained for resistor networks based on the matrix tree theorem to analyze failure spreading after link failures in power grids. Using a spanning tree formulation of link failures, we analyze three strategies based on the network topology that allow us to reduce the impact of single link failures. All our strategies either do not reduce the grid's ability to transport flow or do in fact improve it - in contrast to traditional containment strategies based on lowering network connectivity. Our results also explain why certain connectivity features completely suppress any failure spreading as reported in recent publications. |
| 536 | _ | _ | |a 111 - Energiesystemtransformation (POF4-111) |0 G:(DE-HGF)POF4-111 |c POF4-111 |f POF IV |x 0 |
| 536 | _ | _ | |a CoNDyNet 2 - Kollektive Nichtlineare Dynamik Komplexer Stromnetze (BMBF-03EK3055B) |0 G:(DE-JUEL1)BMBF-03EK3055B |c BMBF-03EK3055B |x 1 |
| 536 | _ | _ | |a VH-NG-1025 - Helmholtz Young Investigators Group "Efficiency, Emergence and Economics of future supply networks" (VH-NG-1025_20112014) |0 G:(HGF)VH-NG-1025_20112014 |c VH-NG-1025_20112014 |x 2 |
| 536 | _ | _ | |a ES2050 - Energie System 2050 (ES2050) |0 G:(DE-HGF)ES2050 |c ES2050 |x 3 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Witthaut, Dirk |0 P:(DE-Juel1)162277 |b 1 |u fzj |
| 773 | _ | _ | |a 10.1103/PhysRevResearch.3.023161 |g Vol. 3, no. 2, p. 023161 |0 PERI:(DE-600)3004165-X |n 2 |p 023161 |t Physical review research |v 3 |y 2021 |x 2643-1564 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/893031/files/PhysRevResearch.3.023161.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:893031 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)176610 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)162277 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Energiesystemdesign (ESD) |1 G:(DE-HGF)POF4-110 |0 G:(DE-HGF)POF4-111 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Energiesystemtransformation |x 0 |
| 913 | 0 | _ | |a DE-HGF |b Energie |l Technologie, Innovation und Gesellschaft |1 G:(DE-HGF)POF3-150 |0 G:(DE-HGF)POF3-153 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-09-04 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV RES : 2022 |d 2023-10-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-08-16T10:08:58Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-08-16T10:08:58Z |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2022-08-16T10:08:58Z |
| 915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2022-08-16T10:08:58Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-27 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0112 |2 StatID |b Emerging Sources Citation Index |d 2023-10-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-27 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-10-27 |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-10-27 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-10-27 |
| 920 | _ | _ | |l no |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-STE-20101013 |k IEK-STE |l Systemforschung und Technologische Entwicklung |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-STE-20101013 |
| 980 | _ | _ | |a APC |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|