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Topological theory of resilience and failure spreading in flow networks
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Link failures in supply networks can have catastrophic consequences that can lead to a complete collapse of the
network. Strategies to prevent failure spreading are thus heavily sought after. Here, we make use of a spanning
tree formulation of link failures in linear flow networks to analyze topological structures that prevent failure
spreading. In particular, we exploit a result obtained for resistor networks based on the matrix tree theorem to
analyze failure spreading after link failures in power grids. Using a spanning tree formulation of link failures, we
analyze three strategies based on the network topology that allow us to reduce the impact of single link failures.
All our strategies either do not reduce the grid’s ability to transport flow or do in fact improve it—in contrast to
traditional containment strategies based on lowering network connectivity. Our results also explain why certain
connectivity features completely suppress any failure spreading as reported in recent publications.
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I. INTRODUCTION

The theory of linear flow networks provides a powerful
framework, allowing one to study systems ranging from water
supply networks [1,2] and biological networks, such as leaf
venation networks [3–6], to resistor networks [7–9], or ac
power grids [10,11]. Failures of transportation links in these
networks can have catastrophic consequences up to a com-
plete collapse of the network. As a result, link failures in linear
flow networks and strategies to limit their consequences are a
field of active study [12–19].

The study of linear flow networks is intimately related
to graph theory since most phenomena can be analyzed on
purely topological grounds [7]. This connection dates back to
work by Kirchhoff [8], who analyzed resistor networks and
introduced several major tools that are now the basis of the
theory of complex networks, such as the matrix tree theorem
[7,8,20]. These tools can now serve as a basis for the analysis
of failure spreading in ac power grids, which can be modeled
as linear flow networks based on the dc approximation [11]. A
substantial part of security analysis in power grids is dedicated
to the study of transmission line outages since they can lead
to cascading outages in a series of failures [21–23].

The topological approach to failure spreading has been
exploited to demonstrate that the strength of flow rerouting
after link failures decays with distance to the failing link
[12–15]. In particular, the so-called rerouting distance based
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on cycles in the network has been found to predict flow rerout-
ing very well [12]. However, the analysis of flow rerouting
still lacks a theoretical foundation. Here, we demonstrate that
these observations made for flow rerouting may be understood
based on a formalism originally developed to study current
flows in resistor networks that uses spanning trees (STs) of the
underlying graph. Moreover, the formalism explains recent
results regarding the shielding against failure spreading in
complex networks.

This paper is structured as follows. In Sec. II, we give an
overview over the theory of linear flow networks and present
an important lemma that relates the current flows in these
networks to STs. In Sec. III, we demonstrate the analogy
between such networks and ac power grids in the dc approx-
imation and relate the ST formulation to line outages studied
in power system security analysis. Finally, in Sec. IV we show
how this formulation may be used to understand why certain
connectivity features inhibit failure spreading extending on
recent results [19].

II. FUNDAMENTALS OF RESISTOR NETWORKS

Resistor networks are a prime example of linear flow
networks and have inspired research throughout centuries
[7,8,24]. A resistor network can be described using a graph
as follows. Let G = (E ,V ) be a connected graph with vertex
set V = {v1, . . . , vN } and M edges in the edge set E . Then
we assign a weight wk to each edge ek = (a, b) in the graph
given by the inverse resistance wk = R−1

k between its terminal
vertices a and b. If there is a potential difference vk = Va − Vb

between the terminal vertices of edge ek = (a, b), according to
Ohm’s law there is a current flow ik between the two vertices
given by

ik = vk

Rk
= Va − Vb

Rk
. (1)
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In order to give a direction to the current flow, we assign an
arbitrary orientation to each edge in the graph that is encoded
by the graph’s edge-node-incidence matrix B ∈ RN×M defined
as [7]

Bn,� =
⎧⎨
⎩

1 if line � starts at node n
−1 if line � ends at node n

0 otherwise.
(2)

The current flows and voltages are then subject to Kirchhoff’s
circuit laws [8]. The first of the laws, typically referred to as
Kirchhoff’s current law, at an arbitrary node j ∈ V (G) reads
as

M∑
ek∈�( j)

ik = I j .

Here, I j ∈ R is the current injected into or withdrawn from
node j, and �( j) ⊂ E (G) is the set of all edges that connect
to node j respecting their orientation. The current law may
be regarded as a continuity equation and thus states that the
inflows and outflows at each node in the network have to
balance with the current injections at the respective node. It
may be written more compactly making use of the node-edge-
incidence matrix

Bi = I, (3)

where i = (i1, . . . , iM )� ∈ RM is a vector of current flows and
I = (I1, . . . , IN )� ∈ RN is a vector of current injections. On
the other hand, we can also introduce a more compact nota-
tion for Ohm’s law (1) by defining a vector of nodal voltage
levels V = (V1, . . . ,VN )� ∈ RN and a diagonal matrix of edge
resistances R = diag(R1, . . . , RM ) ∈ RM×M such that Ohm’s
law reads as

Ri = B�V. (4)

Combining Ohm’s law with Kirchhoff’s current law, we arrive
at the following relationship between nodal voltages V and
nodal current injections I:

I = BR−1B�V. (5)

This Poisson-like equation has been analyzed in different
contexts [7,12,25]. Note that Kirchhoff’s voltage law is au-
tomatically satisfied by virtue of Eq. (3), because the resulting
vector of potential differences v = BT V vanishes along any
closed cycle due to the duality between the graph’s cycle space
and its cut space [7,26]. In addition to that, the potential at one
node may be chosen freely without affecting the result.

The matrix connecting the two quantities is referred to
as a weighted graph Laplacian or Kirchhoff matrix L =
BR−1B� ∈ RN×N and characterizes the underlying graph
completely. It has the following entries [7]:

Lmn =
{∑

�∈�(m)
w� if m = n

−w� if m is connected to n by �.
(6)

Here, the weight of an edge � is again given by its inverse
resistance w� = R−1

� . For a connected graph, this matrix has
exactly one vanishing eigenvalue λ1 = 0 with corresponding
unit eigenvector v1 = 1/

√
N such that L1 = 0. For this rea-

son, the matrix is noninvertible. This is typically overcome by

making use of the graph’s Moore-Penrose-pseudoinverse L†,
which has properties similar to the actual inverse [27].

With this formalism at hand, we can in principle now
determine the current on any edge given a particular injection
pattern I and edge resistances R. As a start, consider the
situation where each edge has a unit resistance R = diag(1)
and a unit current is injected into a particular vertex s and
withdrawn at another one t such that I = es − et , where ei =
(0, . . . , 1︸︷︷︸

i

, . . . , 0)� ∈ {0, 1}M are the unit vectors with en-

try one at position i and zero otherwise. In this situation, the
current across any edge in the graph � = (a, b) is given by the
following lemma, which dates back to Kirchhoff [8,20] and
has been popularized by Shapiro [7,28].

Lemma 1. Put a 1-A current between the vertices s and t of
a connected, unweighted graph G such that I = es − et . Then
the current on any other edge (a, b) is given by

iab = N (s, a → b, t ) − N (s, b → a, t )

N ,

where N (s, a → b, t ) is the number of STs that contain a path
from s to t of the form s, . . . , a, b, . . . , t and N is the total
number of STs of the graph.

Whereas this lemma only holds for graphs where all links
have unit resistances, real-world resistor networks or other
types of linear flow networks are typically weighted with non-
homogeneous resistances. However, the extension to weighted
networks is straightforward as summarized in the following
corollary (see, e.g., Theorem II.2 in Ref. [7]).

Corollary 1. Put a 1-A current between the vertices s and t
of a connected, weighted graph G such that I = es − et . Then
the current on any other edge (a, b) is given by

iab = N ∗(s, a → b, t ) − N ∗(s, b → a, t )

N ∗ , (7)

where N ∗ = ∑
T ∈T

∏
e∈T we is the sum over the products of

the weights we of all edges e ∈ T that are part of the respective
spanning tree T ; T is the set of all STs in the graph. Similarly,
N ∗(s, a → b, t ) equals the sum over all STs that contain a
path of the form s, . . . , a, b, . . . , t , where each ST is weighted
with the product of the weight we of all edges that are part of
it. We thus assign a weight to each ST given by the product of
the weights of the edges on the ST and replace the unweighted
STs in Lemma 1 by weighted STs.

We will demonstrate in the following sections how this
lemma and corollary may be made use of to understand how
failure spreading may be mitigated in linear flow networks
such as ac power grids in the dc approximation.

III. ANALOGY BETWEEN RESISTOR NETWORKS AND
POWER FLOW IN ELECTRICAL GRIDS

Importantly, the theoretical framework developed in the
last section may be applied not only to resistor networks but
also to power grids. In this section, we demonstrate how these
results may be used to gain insight into the mitigation of
failure spreading in power grids.
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TABLE I. Analogy between resistor networks and ac power grids
in the dc approximation.

dc approximation Resistor network

Quantity Symbol Quantity Symbol

Power injections P Nodal current I
Real power flow F Current flow i
Nodal phase angles ϑ Nodal voltages V
Line susceptances be Inverse edge resistance r−1

e

A. Modeling power grids as linear flow networks

Most electric power transmission grids are made up of ac
transmission lines and are, as such, governed by the nonlinear
ac power flow equations [11]. However, the real power flow
over transmission lines can be simplified to a linear flow
model in what is referred to as the dc approximation of the
ac power flow. This approximation is based on the following
assumptions [29].

(i) Nodal voltage magnitudes vary little.
(ii) Transmission lines are purely inductive; that is, their

resistance is negligible compared with their reactance r� �
x�, ∀� ∈ E (G).

(iii) Differences between nodal voltage angles ϑn, n ∈
V (G), of neighboring nodes n, m are small |ϑn − ϑm| � 1.

Typically, these assumptions are met if the power grid is
not heavily loaded and if the power grid is modeled at the
transmission level where line resistances are small [29]. As a
result, the real power flow F� along a transmission line e� =
(n, m) ∈ E (G) in the dc approximation depends linearly on
the nodal voltage phase angles ϑn of neighboring nodes

F� = b�(ϑn − ϑm). (8)

Here, b� ≈ x−1
� is the line susceptance of line �. Thus the

vector of real power flow along the transmission lines in the
power grid F = (F1, . . . , FM )� ∈ RM takes the role of current
flow vector in the case of resistor networks. On the other hand,
the nodal voltage phase angles ϑ = (ϑ1, . . . , ϑN )� ∈ RN take
the role of the nodal voltages V, and line weights are given by
the line susceptances bk of an edge ek in correspondence with
the inverse resistances R−1

k in the case of resistor networks.
Thus Ohm’s law (4) translates to power grids as

F = Bd B�ϑ.

Here, Bd = diag(b1, . . . , bM ) ∈ RM×M is the diagonal matrix
of line susceptances. Again, Kirchhoff’s current law (3) holds,
and we may express it using vector quantities as follows
[11,12]:

BF = P.

Here, P = (P1, . . . , PN )� ∈ RN is the vector of nodal power
injections, which thus takes the role of nodal current injections
I. We summarize these equivalences in Table I.

B. Sensitivity factors in power grid security analysis

In power grid security analysis, linear sensitivity factors
are used to study and prevent line overloads which could
cause disturbances to power system operation and result in

power outages [11]. One of these factors is the power transfer
distribution factor (PTDF). The PTDFs,t,k then quantifies the
change in flow �Fk on line ek ∈ E (G) if a power �P is
injected at node r and withdrawn from node s. It is calculated
as [11]

PTDFr,s,k = �Fk

�P
. (9)

Now assume that a single line em fails, for example, as a result
of an overload, and is disconnected from the network. The
change in power flow on a line ek may then be calculated by
using the line outage distribution factor (LODF) [11]

LODFk,m = �Fk

F (0)
m

. (10)

Here, F (0)
m is the flow on line em before the outage. Mathemat-

ically, we can map the flow changes after a failure to the flow
changes after changes in the injection patterns by considering
power injections that effectively compensate for the flow on
the link that is assumed to fail (see Refs. [11,12]). As a result,
the two quantities are related as follows if em = (r, s) is the
failing link [11]:

LODFk,m = PTDFr,s,k

1 − PTDFr,s,m
. (11)

Note that the description of link failures using LODFs relies
on the dc approximation of the nonlinear ac power flow equa-
tions. However, extended descriptions have been proposed
that incorporate nonlinear terms [31]. Furthermore, the dc
approximation and thus the LODF-based description of link
failures are commonly used to model cascading failures in
power grids, where a single link triggers the failure of other
links [23,32,33]. A comparison of the effect of link failures in
linear and nonlinear models of power flows can, for example,
be found in Ref. [34].

C. Spanning tree description of link failures

On the basis of the analogy between electrical grids and
resistor networks developed in the last sections, we will now
show how the ST formula presented in Corollary 1 may be
used for power system security analysis. In the language of
power grids, the lemma yields the PTDFs,t,m for an edge em =
(a, b) if a unit power �P is injected at node r and withdrawn
from node s. For this reason, the PTDF may be calculated as
follows:

PTDFs,t,m = N ∗(s, a → b, t ) − N ∗(s, b → a, t )

N ∗ . (12)

Based on Eq. (11), which yields the LODF expressed in terms
of the PTDF, we can make use of this expression to derive
an equivalent expression for the LODF. If ek = (r, s) is the
failing link and em = (a, b) is the link where the flow changes
are monitored, the expression based on Eq. (12) reads as

LODFm,k = N ∗(r, a → b, s) − N ∗(r, b → a, s)

N ∗ − [N ∗(r, r → s, s) − N ∗(r, s → r, s)]

= N ∗(r, a → b, s) − N ∗(r, b → a, s)

N ∗ − N ∗(r, r → s, s)

= N ∗(r, a → b, s) − N ∗(r, b → a, s)

N ∗
\{k}

. (13)
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|ΔF | ≈ 1.0 · 10−3

(a) Initial grid strengthened link

|ΔF | ≈ 2.8 · 10−5

(b)

added nodes

|ΔF | ≈ 3.1 · 10−4

(c) added network isolator

|ΔF | = 0

(d)

10−7

10−6

10−5

10−4

10−3

10−2

10−1

|ΔF |

FIG. 1. Different methods for mitigating failure spreading in linear flow networks. (a) The failure of a single link (red) with unit flow results
in flow changes �F (color scale) throughout the Scandinavian power grid. (b) Failure spreading to Finland may be reduced by strengthening
a link that horizontally separates Sweden and Finland. (c) Adding nodes, thus increasing the length of the rerouting path, reduces failure
spreading to Finland as well. (d) Adding two links to construct a network isolator results in a complete vanishing of flow changes in the other
part of the grid. Grid topology was extracted from the open energy system model PyPSA-Eur [30].

Here, N ∗
\{k} denotes the weight of all STs in the graph evalu-

ated after removing the edge ek from the set of trees T . We
thus found an expression for the LODFs that is based purely
on certain STs in the graph. This equation is the basis of our
analysis of subgraphs inhibiting failure spreading which we
will perform in the following sections. Note that a similar
expression for the LODFs based on spanning 2-forests has
recently been derived by Guo et al. [16].

IV. MITIGATING FAILURE SPREADING

We have seen in the last section that the spreading of
failures is studied using LODFs in power system security
analysis. To prevent large flow changes on other links after the
failure of a link ek which may potentially trigger dangerous
cascades of failures, it is desirable for overall power system
security to keep the LODFs small. A natural question to ask
is thus the following: Can we design or alter the network
topology in such a way that LODFs stay small? Based on
Eq. (13) expressing the LODF in terms of STs, this question
may be addressed in a purely topological manner. In particu-
lar, we deduce three strategies to reduce the effect of failure
spreading.

(1) Fixing long paths between trigger link ek and monitor-
ing link el leaves only few degrees of freedom, which reduces
the relative contribution of the numerator in Eq. (13).

(2) Fixing specific paths between trigger link ek and mon-
itoring link el can force links of large weights to be not

contained in the numerator, thus reducing its relative contri-
bution to Eq. (13).

(3) Introducing symmetric elements between parts of the
network may lead to a complete balancing between the two
contributions in the numerator of Eq. (13).

In Fig. 1 we illustrate three possible ways to realize these
strategies to mitigate the impact of the failure of a single link
(red) in a real power grid. All three strategies provide sig-
nificant relief to the right module of the Scandinavian power
grid, which represents Finland, after a link failure occurred in
the left module. Remarkably, all these strategies are intimately
related to the graph’s topological properties as we will see in
the following sections.

A. The role of the rerouting distance

With Eq. (13) expressing LODFs using STs at hand it is in-
tuitively clear that certain paths in the network should play an
important role in predicting the overall effect of line outages.
In particular, we can see immediately that for a given failing
link ek , the numerator in Eq. (13) depends on the paths going
through the link monitoring the flow changes el whereas the
denominator does not. Therefore we expect the flow changes
to be smaller on another link em that has a longer minimum
path going through em and ek compared with link el . This is
due to the fact that reducing the number of possible paths in
the sum over all STs N ∗(r, a → b, s) effectively reduces the
number of STs by fixing a certain path.
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FIG. 2. Flow changes decay exponentially with cyclic paths in different networks. (a) and (d) Number of spanning trees (STs) τ (G/p) in
an Erdős-Rényi (ER) random graph G(200, 300) with 300 edges and 200 vertices (a) and in the power flow test case “IEEE 118” [35] (d) that
contain a randomly chosen cyclic path p (y axis) plotted against the length of the path len(p) (x axis). The number of STs decays exponentially
with the length of the path, thus appearing linear on a logarithmic y scale. (b) and (e) The rerouting distance scales exponentially with the
LODF evaluated here for a single trigger for both grids. (c) and (f) The exponential scaling is preserved when averaging over all possible
trigger links. Shading indicates 0.25 and 0.75 quantiles, a line represents the median. In Figs. 8 and 9 in the Appendix we demonstrate that the
scaling robustly occurs for ER random graphs by analyzing 20 random realizations.

This intuitive idea is demonstrated to hold also quantita-
tively in Figs. 2(a) and 2(d): We illustrate that the number
of STs τ (G/p) scales approximately exponentially with the
length of the cyclic path contained in the STs for an un-
weighted Erdős-Rényi (ER) random graph G(200, 300) with
300 edges and 200 vertices [36] [Fig. 2(a)] and the power flow
test case “IEEE 118” [35,37] [Fig. 2(d)]. To study this scaling,
we contract a cyclic path p between two arbitrarily chosen
edges and quantify the number of STs using Kirchhoff’s ma-
trix tree theorem [8]. The theorem states that the number of
STs in a graph may be calculated using the determinant of the
graph’s Laplacian matrix [7]

τ (G) = det(Lu).

Here, Lu is the matrix obtained from the Laplacian matrix L
of G obtained by removing the row and column correspond-
ing to an arbitrarily chosen vertex u ∈ V (G). The number
of STs τ (G/p) containing a path p may be calculated by
contracting the path in the graph and the Laplacian matrix
and then taking the determinant of the resulting Laplacian.
Taking the difference in the numerator of Eq. (13) between
the path and a reversed path will in general not affect the
exponential scaling since the difference of two exponential
functions with different exponents or different prefactors will
again scale exponentially. In Fig. 8 in the Appendix, we show

that the same scaling robustly occurs in ER random graphs by
analyzing it for 20 different random realizations of ER graphs.

We may thus expect an exponential decay of LODFs with
the length of fixed, cyclic paths. This result complements
recent progress made in the understanding of the role played
by distance for failure spreading in linear flow networks. In
Ref. [12], it was shown that flow changes after a link failure
are not captured well by the ordinary graph distance between
the failing link and the link monitoring flow changes. Instead,
a different distance measure referred to as rerouting distance
captures this effect much better. It is defined as follows:

Definition 1. A rerouting path from vertex r to vertex s via
the edge (m, n) is a path

(v0 = r, v1, . . . , vi = m, vi+1 = n, vi+2, . . . , vk = s)

or

(v0 = r, v1, . . . , vi = n, vi+1 = m, vi+2, . . . , vk = s)

where no vertex is visited twice. The rerouting distance be-
tween two edges (r, s) and (m, n) denoted by

edistre[(r, s), (m, n)]

is the length of the shortest rerouting path from r to s via
(m, n) plus the length of edge (r, s). Equivalently, it is the
length of the shortest cycle crossing both edges (r, s) and

023161-5



FRANZ KAISER AND DIRK WITTHAUT PHYSICAL REVIEW RESEARCH 3, 023161 (2021)

we = 0.1we = 1(a) we = 10we = 1(b) (c) (d)

r sm n
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r s m n
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(g)

r s m n

(h)

10−1

10−2

|ΔF |

FIG. 3. Spanning trees (STs) may be used to explain the shielding effect of certain connectivity structures between different parts of a
network. (a) and (b) A square grid is divided into two parts by either weakening the links connecting two parts [(a), blue, we = 0.1] or
strengthening the links perpendicularly separating the two parts [(b), blue, we = 10]. (c) and (d) For both divisions, the failure of a single link
with unit flow (red) significantly reduces failure spreading to the other part of the network. (e)–(h) Different STs (black) that contain specific
paths of the form (v0 = r, v1, . . . , vi = m, vi+1 = n, vi+2, . . . , vk = s) used to calculate the flow changes on link (m, n) for a failure of link
(r, s) by virtue of Eq. (7). (e) and (f) For the weakly connected network shown in (a) and (c), a monitoring link in the same part (e) may lead
to STs that contain only one weak link (blue shading). Thus the contribution of this ST to the sum over all STs is much stronger than for a
monitoring link in the other part, where STs have to contain at least two weak links [(f), blue shading]. (g) and (h) For the strongly connected
network shown in (g) and (h), the STs with the highest contribution are the ones containing all edges with strong weights [(g), blue shading]. (h)
If links (m, n) and (r, s) are in different parts, no ST may contain all edges with strong weights (blue shading), thus reducing failure spreading
in this case.

(m, n). If no such path exists, the rerouting distance is defined
to be ∞.

Note that we include the weight of the edge (r, s) to make
sure the rerouting distance is symmetric. The rerouting dis-
tance defined this way is a proper distance metric as shown
in Ref. [12]. With the arguments made before at hand it is
intuitively clear why the rerouting distance performs very well
in predicting the effects of line outages. Indeed, we observe
an exponential scaling of the LODFs for a given trigger link
in the ER random graph [Fig. 2(b)] and in the test case “IEEE
118” [Fig. 2(e)]. The same observation still holds if we av-
erage over all monitoring links located at a fixed rerouting
distance to the possible trigger links over which we average
thereafter [Figs. 2(c) and 2(f)]. In Fig. 9 we show that the
observed scaling robustly appears by comparing it for 20
different realizations of ER random graphs.

B. The role of strong and weak network connectivity

Our second strategy to reduce failure spreading after link
failures is based on fixing specific paths in the network in
such a way that they cannot contain certain links with large
weights. This way, the numerator in Eq. (13) does not contain
the contribution of the links with large weights whereas the
denominator does, thereby reducing the overall impact of the
link failure. Note that in contrast to the last section, the fixed

paths do not necessarily have to be long to prevent failure
spreading. We will demonstrate this strategy for two cases:
First, we use this reasoning to demonstrate that weakening
the links between two parts of the network—thus effectively
dividing it into communities—may reduce failure spreading
between them. This is expected as weakly connected networks
generally suppress failure spreading from one part to the other
one, but this also limits the possibility of power flow between
the parts. This is no longer true for the second strategy: We
illustrate why also strengthening the links that separate two
parts of the network perpendicularly to the community bound-
ary reduces the impact of link failures.

The two strategies are illustrated for a simple 3 × 6 square
grid in Fig. 3. We divide the square grid into two parts by
either weakening the links that separate the parts [Fig. 3(a)] or
strengthening the links perpendicular to these links [Fig. 3(b)].
We then monitor the flow changes (color scale) after the fail-
ure of a single link (red) in both cases [Figs. 3(c) and 3(d)].
For weak connectivity, the failure of link ek = (r, s) (dashed
orange line) leads to a different contribution of the numerator
in Eq. (13) if the monitoring link e� = (m, n) (green line) is
contained in the same part [Fig. 3(e)] as compared with a
different, weakly connected part [Fig. 3(f)] in an otherwise
symmetrical situation. Note that the distance between moni-
toring link and trigger link is also the same in both Fig. 3(e)
and Fig. 3(f). For a link in the same part, the numerator also
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FIG. 4. Network isolators that lead to a complete vanishing of LODFs are created using certain symmetric paths in the network. (a) STs
that contain a path starting at node r and terminating at node s and containing the edge (m, n) (blue) or (n, m) (red) have to cross the subgraph
consisting of dotted, colored edges in the center. Since each path can contain each vertex and edge only once, each ST passing through the
subgraph in one way (blue) has a counterpart passing through the subgraph in the other way (red). (b) Failure of a link (red) results in vanishing
LODFs (color scale) in the part connected by a network isolator as predicted using the ST formulation of link failures.

contributes with STs containing only one weak link (thin line,
blue shading). For a trigger link located in the other part, each
ST connecting trigger link and monitoring link has to contain
at least two weak links (shaded blue). Since the contribution
in the numerator is proportional to the product of all weights
along the ST and the situation is otherwise symmetric, we
expect a weaker LODF and thus a shielding effect if the two
links are contained in different, weakly connected parts.

A similar observation holds in the case of strong con-
nectivity: If the monitoring link e� = (m, n) is contained in
the same part of the network as the trigger link ek = (r, s)
[Fig. 3(g)], now separated through strong connections, span-
ning trees connecting the two links may contain two—or
generally, all—strong links. For a trigger link in the other
part of the network, the spanning tree connecting them can
contain maximally one—or generally, all minus one—strong
links. Again, the term in the numerator scales with the link
weights contained in the spanning trees. Therefore we expect
the effect of link failures to be stronger for links located in the
same part as compared with links contained in the other part,
which is confirmed when simulating the failure of a single link
in Fig. 3(d).

C. The role of symmetry

As a third strategy for reducing failure spreading, we sug-
gest building networks in such a way that the terms in the
numerator of Eq. (13) balance. In this case, failure spreading
reduces to zero for the respective links. In order to balance
the terms in the numerator of Eq. (13), we need the spanning
trees passing through the monitoring link e� = (a, b) in both
directions to have exactly the same weight

N ∗(r, m → n, s) = N ∗(r, n → m, s)

⇒
∑

T ∈T (r,m→n,s)

∏
e∈T

we =
∑

T ∈T (r,n→m,s)

∏
e∈T

we.

Here, T (r, m → n, s) is the set of all spanning trees con-
taining a path of the form (r, . . . , m, n, . . . , s). This equality
is, for example, fulfilled if for each tree T ∈ T (r, m → n, s)
there is a counterpart T ∈ T (r, n → m, s) of the same weight.
This may be accomplished by introducing certain symmet-
ric elements, referred to as network isolators [19], into the

graph as demonstrated in Fig. 4: For each ST connecting
trigger link ek = (r, s) and monitoring link e� = (m, n) and
containing a path of the form (r, . . . , m, n, . . . , s) (gray and
blue lines) there is an ST containing a path of the form
(r, . . . , n, m, . . . , s) (gray and red lines). If we compare the
product of weights for a single tree T0 ∈ T (r, m → n, s) and
its counterpart T ∗

0 ∈ T (r, n → m, s), such that both contain
exactly the same edges except for the edges connecting the
two parts, i.e., the links marked as blue and red arrows in
Fig. 4(a), we can see that these products are equal except for
the links r1 and r2 (red links) being contained only in T0, and
b1 and b2 (blue links) being contained only in T ∗

0 . We can thus
conclude that the above equality is fulfilled, i.e., the product
of weights is equal for both trees T0 and T ∗

0 , if

b1 · b2 = r1 · r2.

In this case, a failure of link ek = (r, s) does not result in
any flow changes on link e� = (m, n) at all. This reasoning
has been generalized recently, where the concept was termed
network isolators [19]. We also note that similar arguments
were put forward by Guo et al. [16]. On general grounds,
network isolators are defined as follows [19].

Lemma 2. Consider a linear flow network consisting of two
parts with vertex sets V1 and V2 and assume that a single link in

FIG. 5. Sign reversal of LODFs by symmetric subgraphs. (a) and
(b) Modifying the subgraph connecting two graphs from the two
parallel lines to the two crossing lines leads to a sign reversal of the
LODFs in the connecting subgraphs (shades of gray). This is in line
with the compensatory effect of the symmetric subgraphs used to
create the network isolator in Fig. 4.
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the induced subgraph G(V1) fails, i.e., a link (r, s) with r, s ∈
V1. If the adjacency matrix of the mutual connections has unit
rank rank(A12) = 1, then the flows on all links in the induced
subgraph G(V2) are not affected by the failure; that is,

�Fm,n ≡ 0 ∀m, n ∈ V2.

The subgraph corresponding to the mutual interactions is re-
ferred to as a network isolator.

Note that network isolators of arbitrary size may be un-
derstood using the same reasoning as presented above for a
network isolator consisting of only four links.

1. Sign reversal of flow changes

Based on the symmetric elements—the network
isolators—introduced in Sec. IV C, we can demonstrate
yet another application of the ST formulation to link failures:
We can modify the grid in such a way that the LODFs
and thus the flow changes change their sign. This is again
based on the symmetry of LODFs in terms of the paths
(r, . . . , m, n, . . . , s) and (r, . . . , n, m, . . . , s). If we apply a
symmetric modification such that paths of the first form are
replaced by parts of the latter one, we can reverse the sign of
the resulting flow changes in the other part. In particular, if
we interchange the two terms appearing in the nominator of
Eq. (13) for a subset of edges, we can change the sign of the
LODF for these edges

N ∗(r, m → n, s) → N ∗(r, n → m, s)

N ∗(r, n → m, s) → N ∗(r, m → n, s)

⇒ LODF�,k → −LODF�,k .

This can be achieved using a modification similar to the one
shown in Fig. 4(a): If the initial network contains the subgraph
indicated by blue dashed arrows in the center, we can revert
the sign of the LODF�,k by changing this subgraph to the
one indicated by red dashed arrows. This is demonstrated
in Fig. 5: Changing the subgraph in the center connecting
the two graphs from the “x”-shaped subgraph [Fig. 5(a)] to
the “=”-shaped subgraph [Fig. 5(b)] leads to a sign reversal
of the LODFs in the second graph (shades of gray), while
the magnitude of LODFs is the same in both panels. This
modification thus allows us to simultaneously change the sign
of all LODFs in a subgraph, which may prevent overloads that
are caused by flows going in a particular direction.

D. Comparison of strategies for mitigating failure spreading

Our theoretical analysis has led to three different strategies
to mitigate failure spreading by optimizing the network topol-
ogy. We will now quantify to what extent these modifications
in topology improve the overall network resilience in terms of
the impact of a single line failure.

To begin with, we quantify the suppression of failure
spreading between two preselected parts of the network. As an
indicator we use the ratio of the LODFs evaluated at a given
distance d to the failing link m suggested in Ref. [19]

R(m, d ) = 〈|LODFk,m|〉ek∈O
d

〈|LODFk,m|〉ek∈S
d

. (14)
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FIG. 6. Failure spreading between Finland and the rest of Scan-
dinavia is suppressed for all three strategies. We evaluate the ratio
of LODFs, R̄(m) := 〈R(m, d )〉d , averaged over distance d [Eq. (14)]
between the right part of the grid, i.e., Finland, and its left part,
i.e., the remainder of Scandinavia (see Fig. 1). We average the ratio
over all distances d for a given trigger link m and sort the values by
magnitude for the initial Scandinavian power grid (dark blue circles).
We then analyze the ratio for the three strategies outlined in Sec. IV B
and shown in Fig. 1. We observe that all strategies consistently yield
reduced failure spreading between the two parts. Strengthening a
specific link [blue triangles; cf. Fig. 1(b)] inhibits failure spreading
more than increasing the length of the rerouting path [light blue
squares; cf. Fig. 1(c)], while adding a network isolator [light blue
diamonds; cf. Fig. 1(d)] completely suppresses failure spreading.

Here, O and S are the two preselected parts of the network
that are supposed to be protected against each other in terms
of failure spreading, m ∈ S is the failing link located in part
S, and d is the unweighted edge distance between trigger link
m and monitoring link k. We average the absolute LODF over
all links k located in the other (O, numerator) and the same
(S, denominator) part located at the fixed distance d . The ratio
assumes values between R ≈ 1 if LODFs in both parts assume
similar values and R ≈ 0 if failure spreading to the other part
O is suppressed completely.

In Fig. 6 we analyze to what extent the three strategies
shown in Fig. 1 are able to reduce failure spreading between
Finland and the remainder of Scandinavia. We analyze the
LODF ratio for all possible trigger links m that are present
in both the modified and the initial grid and compare the
ratio for a given link by averaging the ratio over the distance
d . Thereby, we are able to compare to what extent failure
spreading caused by the failure of a given link is reduced
in each grid modification scenario. We observe that all three
strategies consistently suppress failure spreading to the other
part as measured by a reduction in the LODF ratio. Whereas
strengthening a single link [Fig. 1(b)] suppresses spreading
more strongly than an increase in rerouting [Fig. 1(c)], adding
a network isolator [Fig. 1(d)] provides the strongest reduction
in failure spreading by setting the LODF ratio to zero.

While all three strategies suppress failure spreading be-
tween the two parts, we did not yet consider their overall
impact on the entire network, i.e., including their impact on
the same part where the trigger link is located. To quantify the
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FIG. 7. Systematic analysis of the overall impact of a given strategy for mitigating failure spreading. We compare the impact of each of the
strategies shown in Fig. 1 on the overall grid resilience measured by the LODF ratio R̄(m) := 〈R(m, d )〉d averaged over distance d [Eq. (15)],
which expresses to what extent the impact of the failure of a given link m on the network differs from its impact in the grid without the
modification. We average the ratio over all distances to calculate a link-based measure of grid resilience. (a) We observe that strengthening a
single link has an overall positive impact on grid resilience and reduces the LODF ratio up to tenfold (dark blue links), with only a few links
showing an increase (red). (b) An increase in rerouting as shown in Fig. 1(c) improves resilience in most links as well; the effect is, however,
less pronounced than in the previous case. (c) Adding a network isolator strongly improves resilience in Finland, while slightly weakening it
in the rest of Scandinavia. Thus all three strategies consistently have a positive impact on link-based resilience in Finland.

overall impact, we now consider the ratio of LODFs before
and after the grid modification

R(m, d ) = 〈|LODFk,m|〉ek∈G′
d

〈|LODFk,m|〉ek∈G
d

. (15)

Here, G is the initial network, and G′ is the network after the
topology has been modified according to a chosen strategy.
As before, m denotes the failing link, and the magnitudes of
the LODFs are averaged over all links k at a given distance
d to the trigger link m. Only links which are present in
both G and G′ are considered as trigger links. While being
defined similarly to the ratio of LODFs in Eq. (14), the main
difference between the two quantities is the following: The
ratio considered here compares the impact of a link failure in
two different networks, while the ratio in Eq. (14) compares
the impact on two different parts of the same network. The
ratio defined here thus quantifies whether a given modification
leads to lower average LODFs in the entire grid or whether it
increases the vulnerability of some links. It assumes values of
unity, R(m, d ) ≈ 1, if the impact of the failure on the entire
grid is approximately the same in the initial and the modified
grid and deviates from unity if the impact of a failure of the
given link m on links at a distance d is reduced [R(m, d ) < 1]
or increased [R(m, d ) > 1].

In Fig. 7, we analyze this ratio for the Scandinavian grid for
each strategy and the resulting grid modification at the border
between Finland and the remainder of Scandinavia shown
in Fig. 1. To be precise, we evaluate the distance-averaged
LODF ratio R̄(m) := 〈R(m, d )〉d for all possible trigger links
m. For all three strategies, we observe a reduction in failure
spreading, i.e., R̄(m) < 1, if the trigger link m is located
in the bulk of Finland or in western Norway. The benefits
are strongest if a network isolator is added [Fig. 7(c)] and
weakest if rerouting distance is increased [Fig. 7(b)]. For a
trigger link m located in the central part of the grid, i.e., in
Sweden, the addition of an isolator has a slightly negative
effect such that R̄(m) > 1, which is, however, much weaker
than the positive effects on the other parts of the grid. The

two other strategies have a negligible impact if m is in this
part of the grid. In all cases, the ratio indicates an increase
in failure spreading for a few trigger links that are located in
the vicinity of the topology modification. To conclude, we
observe that the choice of a favorable strategy depends on
the goal to be achieved. If trigger links in Sweden or in the
vicinity of the border between Sweden and Finland have been
identified as links that are likely to fail, none of the strategies
will strongly increase grid resilience or will even deplete it.
If, on the other hand, the goal is to protect the grid against
likely link failures that emerge in Finland, all three strategies
consistently provide a certain benefit to grid resilience which
is also confirmed by the results in Fig. 6. In this case, adding
a network isolator most likely provides the best results.

In total, the LODF ratios R(m, d ) and R(m, d ) provide a
complementary view on the different strategies by measuring
the extent to which failures are suppressed between the two
parts of a network, on the one hand, and the impact of a
strategy on the network as a whole on the other one. For this
reason, they can be used to balance the pros and cons of a
grid modification and thus allow one to find which strategy
performs best for the given grid or even allow one to study the
impact of a combination of different strategies.

V. CONCLUSION

We demonstrated how a spanning tree formulation of link
failures may be used to understand which topological patterns
aid the mitigation of failure spreading in power grids and
other types of linear flow networks. In particular, we derived
and explained three strategies for reducing the effect of link
failures in linear flow networks based on spanning trees. Our
results offer an understanding of previous strategies used to
inhibit failure spreading in power grids and may thus help to
increase power grid security.

All strategies analyzed here for reducing failure spreading
are based on extending—or at least not reducing—the net-
work’s ability to transport flows. This is in contrast to typical
containment strategies in power grid security which are based
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FIG. 8. Exponential decay of the number of spanning trees (STs) τ (G/p) in Erdős-Rényi (ER) random graphs, with length of randomly
chosen cyclic path len(p), occurs robustly. Each panel shows the number of STs in a different, random realization of an ER graph G(200, 300)
with 300 edges and 200 vertices after collapsing a randomly chosen cyclic path. We analyze 200 randomly chosen cyclic paths for each
ER graph (dots) and perform a least-squares fit of an exponential function on the semilog scale (dashed lines). The number of STs decays
exponentially with the length of the path, thus appearing linear on a logarithmic y scale.

on islanding the power grid, i.e., reducing the connectivity for
the sake of security. We illustrated how to exploit the intimate
connection to graph theory to find and analyze subgraphs that
allow for improving both power grid resilience and efficiency
at the same time.

Our results offer a new understanding on a graph-
theoretical level of network structures that have been found to
inhibit or enhance failure spreading. We illustrated the fruitful
approach of analyzing failure spreading in power grids by us-
ing spanning trees for several subgraphs but are confident that
other subgraphs for enhancing or inhibiting failure spreading
may be unveiled using this formalism.

Finally, the question arises regarding to what extent our
theoretical results are relevant for the stability of real-world
power grids, in particular, the stability to large-scale black-
outs. In fact, a power grid blackout is typically triggered by

the outage of a single transmission element, more rarely a
single generation element [21]. When such a transmission line
outage occurs, power flow is redistributed to parallel transmis-
sion paths, which may cause secondary overloads. Hence the
scenario considered in this paper is of high practical relevance.

Our results have been derived for the linearized dc approxi-
mation; hence they will hold only approximately for scenarios
where the dc approximation is no longer valid. In particular,
there is no longer an exact analogy between resistor networks
and ac power grids when flows are calculated nonlinearly
using ac power flow models. However, the impact of line
failures in high-voltage grids is typically well described by the
linearized dc approximation [19,34]. Deviations occur mainly
for high-loading scenarios, but even then the dc approximation
usually gives a reasonable first-order estimate of the flow
redistribution. It must be noted that the assumptions leading
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FIG. 9. Decay of averaged LODFs with rerouting distance to the trigger link is robust throughout 20 different realizations of Erdős-Rényi
(ER) random graphs. Each panel shows the decay of LODFs for a different, random realization of an ER graph G(200, 300) with 300 edges
and 200 vertices. We observe an approximately exponential scaling of LODFs with rerouting distance when averaging over all possible links
located at a fixed rerouting distance to the trigger link. Shading indicates 0.25 and 0.75 quantiles; a line represents the median.

to the dc approximation are not necessarily violated during
the initial stages of a cascade. Secondary overloads occur
when the current or real power flow exceeds a threshold. If
the reactance x� is not too large, this will happen well before
the angle difference becomes large. During the final stages of
a cascade, nonlinear and dynamical effects must be taken into
account.

Nevertheless, the focus of our study is on flow networks
where flow distribution and redistribution after failures are
governed by Kirchhoff’s laws. Further studies are necessary
to assess whether parts of our results may in some sense
be transferred to topological models where flows are routed
along shortest paths [38–40].
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APPENDIX

In this Appendix, we demonstrate that the scaling robustly
occurs for ER random graphs by analyzing 20 random real-
izations (Figs. 8 and 9).
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