Hauptseite > Publikationsdatenbank > Twin boundary defect engineering improves lithium-ion diffusion for fast-charging spinel cathode materials > print |
001 | 893036 | ||
005 | 20210706160308.0 | ||
024 | 7 | _ | |a 10.1038/s41467-021-23375-7 |2 doi |
024 | 7 | _ | |a 2128/27907 |2 Handle |
024 | 7 | _ | |a 34035292 |2 pmid |
024 | 7 | _ | |a WOS:000658773300008 |2 WOS |
037 | _ | _ | |a FZJ-2021-02516 |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Wang, Rui |0 P:(DE-Juel1)161485 |b 0 |
245 | _ | _ | |a Twin boundary defect engineering improves lithium-ion diffusion for fast-charging spinel cathode materials |
260 | _ | _ | |a [London] |c 2021 |b Nature Publishing Group UK |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1622645659_8027 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Defect engineering on electrode materials is considered an effective approach to improve the electrochemical performance of batteries since the presence of a variety of defects with different dimensions may promote ion diffusion and provide extra storage sites. However, manipulating defects and obtaining an in-depth understanding of their role in electrode materials remain challenging. Here, we deliberately introduce a considerable number of twin boundaries into spinel cathodes by adjusting the synthesis conditions. Through high-resolution scanning transmission electron microscopy and neutron diffraction, the detailed structures of the twin boundary defects are clarified, and the formation of twin boundary defects is attributed to agminated lithium atoms occupying the Mn sites around the twin boundary. In combination with electrochemical experiments and first-principles calculations, we demonstrate that the presence of twin boundaries in the spinel cathode enables fast lithium-ion diffusion, leading to excellent fast charging performance, namely, 75% and 58% capacity retention at 5 C and 10 C, respectively. These findings demonstrate a simple and effective approach for fabricating fast-charging cathodes through the use of defect engineering. |
536 | _ | _ | |a 535 - Materials Information Discovery (POF4-535) |0 G:(DE-HGF)POF4-535 |c POF4-535 |x 0 |f POF IV |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Chen, Xin |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Huang, Zhongyuan |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Yang, Jinlong |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Liu, Fusheng |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Chu, Mihai |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Liu, Tongchao |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Wang, Chaoqi |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Zhu, Weiming |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Li, Shuankui |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Li, Shunning |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Zheng, Jiaxin |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Chen, Jie |0 P:(DE-Juel1)178987 |b 12 |
700 | 1 | _ | |a He, Lunhua |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a Jin, Lei |0 P:(DE-Juel1)145711 |b 14 |
700 | 1 | _ | |a Pan, Feng |0 0000-0002-8216-1339 |b 15 |
700 | 1 | _ | |a Xiao, Yinguo |0 P:(DE-Juel1)131047 |b 16 |e Corresponding author |
773 | _ | _ | |a 10.1038/s41467-021-23375-7 |g Vol. 12, no. 1, p. 3085 |0 PERI:(DE-600)2553671-0 |n 1 |p 3085 |t Nature Communications |v 12 |y 2021 |x 2041-1723 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/893036/files/Jin_Nature%20Communications%2012%203085%202021.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:893036 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 14 |6 P:(DE-Juel1)145711 |
913 | 0 | _ | |a DE-HGF |b Energie |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Controlling Configuration-Based Phenomena |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Materials Systems Engineering |1 G:(DE-HGF)POF4-530 |0 G:(DE-HGF)POF4-535 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Materials Information Discovery |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2021-02-02 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-02-02 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-02-02 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2021-02-02 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2019 |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-02-02 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-02-02 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b NAT COMMUN : 2019 |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-02-02 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2021-02-02 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|