Home > Publications database > Atomic Structure and Electron Magnetic Circular Dichroism of Individual Rock Salt Structure Antiphase Boundaries in Spinel Ferrites > print |
001 | 893037 | ||
005 | 20240405061953.0 | ||
024 | 7 | _ | |a 10.1002/adfm.202008306 |2 doi |
024 | 7 | _ | |a 1057-9257 |2 ISSN |
024 | 7 | _ | |a 1099-0712 |2 ISSN |
024 | 7 | _ | |a 1616-301X |2 ISSN |
024 | 7 | _ | |a 1616-3028 |2 ISSN |
024 | 7 | _ | |a 2128/27908 |2 Handle |
024 | 7 | _ | |a WOS:000629793800001 |2 WOS |
037 | _ | _ | |a FZJ-2021-02517 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Li, Zhuo |0 0000-0003-2474-7769 |b 0 |
245 | _ | _ | |a Atomic Structure and Electron Magnetic Circular Dichroism of Individual Rock Salt Structure Antiphase Boundaries in Spinel Ferrites |
260 | _ | _ | |a Weinheim |c 2021 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1636526044_7899 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Grants listed in the acknowledgments (FZJ side)Sino-German Mobility Programme at the Sino-German Center for Research Promotion (M-0265)European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant No. 856538, project “3D MAGiC” and Grant No. 823717, project “ESTEEM3”)the DARPA TEE program through grant MIPR# HR0011831554 and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 405553726 – TRR 270. |
520 | _ | _ | |a Spinel ferrites are an important class of materials, whose magnetic properties are of interest for industrial applications. The antiphase boundaries (APBs) that are commonly observed in spinel ferrite films can hinder their applications in spintronic devices and sensors, as a result of their influence on magnetic degradation and magnetoresistance of the materials. However, it is challenging to correlate magnetic properties with atomic structure in individual APBs due to the limited spatial resolution of most magnetic imaging techniques. Here, aberration-corrected scanning transmission electron microscopy and electron energy-loss magnetic chiral dichroism are used to measure the atomic structure and electron magnetic circular dichroism (EMCD) of a single APB in NiFe2O4 that takes the form of a rock salt structure interlayer and is associated with a crystal translation of (1/4)a[011]. First principles density functional theory calculations are used to confirm that this specific APB introduces antiferromagnetic coupling and a significant decrease in the magnitude of the magnetic moments, which is consistent with an observed decrease in EMCD signal at the APB. The results provide new insight into the physical origins of magnetic coupling at an individual defect on the atomic scale. |
536 | _ | _ | |a 535 - Materials Information Discovery (POF4-535) |0 G:(DE-HGF)POF4-535 |c POF4-535 |x 0 |f POF IV |
536 | _ | _ | |a 3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538) |0 G:(EU-Grant)856538 |c 856538 |x 1 |f ERC-2019-SyG |
536 | _ | _ | |a Self-EsteemProcesses - A self-esteem process framework of the transition to work (846839) |0 G:(EU-Grant)846839 |c 846839 |x 2 |f H2020-MSCA-IF-2018 |
536 | _ | _ | |a DARPA, Phase 2 - Defense Advanced Research Projects Agency Manipulation of magnetic skyrmions for logicin- memory applications (Z1422.01.18) |0 G:(DE-Juel-1)Z1422.01.18 |c Z1422.01.18 |x 3 |
536 | _ | _ | |a DFG project 405553726 - TRR 270: Hysterese-Design magnetischer Materialien für effiziente Energieumwandlung (405553726) |0 G:(GEPRIS)405553726 |c 405553726 |x 4 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Lu, Jinlian |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Jin, Lei |0 P:(DE-Juel1)145711 |b 2 |
700 | 1 | _ | |a Rusz, Ján |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Kocevski, Vancho |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Yanagihara, Hideto |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Kita, Eiji |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Mayer, Joachim |0 P:(DE-Juel1)130824 |b 7 |
700 | 1 | _ | |a Dunin-Borkowski, Rafal E. |0 P:(DE-Juel1)144121 |b 8 |
700 | 1 | _ | |a Xiang, Hongjun |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Zhong, Xiaoyan |0 P:(DE-HGF)0 |b 10 |e Corresponding author |
773 | _ | _ | |a 10.1002/adfm.202008306 |g Vol. 31, no. 21, p. 2008306 - |0 PERI:(DE-600)2039420-2 |n 21 |p 2008306 - |t Advanced functional materials |v 31 |y 2021 |x 1616-3028 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/893037/files/Invoice_8996219.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/893037/files/Jin_2_adfm.202008306.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:893037 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)145711 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)130824 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)144121 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Materials Systems Engineering |1 G:(DE-HGF)POF4-530 |0 G:(DE-HGF)POF4-535 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Materials Information Discovery |x 0 |
913 | 0 | _ | |a DE-HGF |b Energie |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Controlling Configuration-Based Phenomena |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2021-01-28 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-01-28 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b ADV FUNCT MATER : 2019 |d 2021-01-28 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV FUNCT MATER : 2019 |d 2021-01-28 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2021-01-28 |w ger |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-28 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-28 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-28 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a DEAL: Wiley 2019 |2 APC |0 PC:(DE-HGF)0120 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-1-20170209 |k ER-C-1 |l Physik Nanoskaliger Systeme |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|