001     893037
005     20240405061953.0
024 7 _ |a 10.1002/adfm.202008306
|2 doi
024 7 _ |a 1057-9257
|2 ISSN
024 7 _ |a 1099-0712
|2 ISSN
024 7 _ |a 1616-301X
|2 ISSN
024 7 _ |a 1616-3028
|2 ISSN
024 7 _ |a 2128/27908
|2 Handle
024 7 _ |a WOS:000629793800001
|2 WOS
037 _ _ |a FZJ-2021-02517
082 _ _ |a 530
100 1 _ |a Li, Zhuo
|0 0000-0003-2474-7769
|b 0
245 _ _ |a Atomic Structure and Electron Magnetic Circular Dichroism of Individual Rock Salt Structure Antiphase Boundaries in Spinel Ferrites
260 _ _ |a Weinheim
|c 2021
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1636526044_7899
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Grants listed in the acknowledgments (FZJ side)Sino-German Mobility Programme at the Sino-German Center for Research Promotion (M-0265)European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant No. 856538, project “3D MAGiC” and Grant No. 823717, project “ESTEEM3”)the DARPA TEE program through grant MIPR# HR0011831554 and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 405553726 – TRR 270.
520 _ _ |a Spinel ferrites are an important class of materials, whose magnetic properties are of interest for industrial applications. The antiphase boundaries (APBs) that are commonly observed in spinel ferrite films can hinder their applications in spintronic devices and sensors, as a result of their influence on magnetic degradation and magnetoresistance of the materials. However, it is challenging to correlate magnetic properties with atomic structure in individual APBs due to the limited spatial resolution of most magnetic imaging techniques. Here, aberration-corrected scanning transmission electron microscopy and electron energy-loss magnetic chiral dichroism are used to measure the atomic structure and electron magnetic circular dichroism (EMCD) of a single APB in NiFe2O4 that takes the form of a rock salt structure interlayer and is associated with a crystal translation of (1/4)a[011]. First principles density functional theory calculations are used to confirm that this specific APB introduces antiferromagnetic coupling and a significant decrease in the magnitude of the magnetic moments, which is consistent with an observed decrease in EMCD signal at the APB. The results provide new insight into the physical origins of magnetic coupling at an individual defect on the atomic scale.
536 _ _ |a 535 - Materials Information Discovery (POF4-535)
|0 G:(DE-HGF)POF4-535
|c POF4-535
|x 0
|f POF IV
536 _ _ |a 3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)
|0 G:(EU-Grant)856538
|c 856538
|x 1
|f ERC-2019-SyG
536 _ _ |a Self-EsteemProcesses - A self-esteem process framework of the transition to work (846839)
|0 G:(EU-Grant)846839
|c 846839
|x 2
|f H2020-MSCA-IF-2018
536 _ _ |a DARPA, Phase 2 - Defense Advanced Research Projects Agency Manipulation of magnetic skyrmions for logicin- memory applications (Z1422.01.18)
|0 G:(DE-Juel-1)Z1422.01.18
|c Z1422.01.18
|x 3
536 _ _ |a DFG project 405553726 - TRR 270: Hysterese-Design magnetischer Materialien für effiziente Energieumwandlung (405553726)
|0 G:(GEPRIS)405553726
|c 405553726
|x 4
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Lu, Jinlian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Jin, Lei
|0 P:(DE-Juel1)145711
|b 2
700 1 _ |a Rusz, Ján
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kocevski, Vancho
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Yanagihara, Hideto
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Kita, Eiji
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Mayer, Joachim
|0 P:(DE-Juel1)130824
|b 7
700 1 _ |a Dunin-Borkowski, Rafal E.
|0 P:(DE-Juel1)144121
|b 8
700 1 _ |a Xiang, Hongjun
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Zhong, Xiaoyan
|0 P:(DE-HGF)0
|b 10
|e Corresponding author
773 _ _ |a 10.1002/adfm.202008306
|g Vol. 31, no. 21, p. 2008306 -
|0 PERI:(DE-600)2039420-2
|n 21
|p 2008306 -
|t Advanced functional materials
|v 31
|y 2021
|x 1616-3028
856 4 _ |u https://juser.fz-juelich.de/record/893037/files/Invoice_8996219.pdf
856 4 _ |u https://juser.fz-juelich.de/record/893037/files/Jin_2_adfm.202008306.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:893037
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145711
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130824
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|x 0
913 0 _ |a DE-HGF
|b Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Controlling Configuration-Based Phenomena
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-01-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-28
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ADV FUNCT MATER : 2019
|d 2021-01-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV FUNCT MATER : 2019
|d 2021-01-28
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a DEAL: Wiley 2019
|2 APC
|0 PC:(DE-HGF)0120
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21