000893047 001__ 893047
000893047 005__ 20240712113232.0
000893047 020__ $$a978-3-95806-549-9
000893047 0247_ $$2Handle$$a2128/28143
000893047 0247_ $$2URN$$aurn:nbn:de:0001-2021072207
000893047 037__ $$aFZJ-2021-02525
000893047 1001_ $$0P:(DE-Juel1)171318$$aHoppe, Eugen$$b0$$eCorresponding author
000893047 245__ $$aKompressionseigenschaften der Gasdiffusionslage einer Hochtemperatur-Polymerelektrolyt-Brennstoffzelle$$f - 2021-04-06
000893047 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2021
000893047 300__ $$aviii, 153
000893047 3367_ $$2DataCite$$aOutput Types/Dissertation
000893047 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000893047 3367_ $$2ORCID$$aDISSERTATION
000893047 3367_ $$2BibTeX$$aPHDTHESIS
000893047 3367_ $$02$$2EndNote$$aThesis
000893047 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1634710641_9161
000893047 3367_ $$2DRIVER$$adoctoralThesis
000893047 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v537
000893047 502__ $$aDissertation, RWTH Aachen University, 2021$$bDissertation$$cRWTH Aachen University$$d2021
000893047 520__ $$aThe high-temperature polymer electrolyte fuel cell (HT-PEFC) has a wide range of applicationsin stationary applications such as combined heat and power generation or as uninterruptiblepower supply, as well as on-board power supply in mobile applications.The aim of the present work is to investigate the compression behavior of the gas diffusion layer(GDL) used in an HT-PEFC in combination with the membrane electrode assembly (MEA). Tocharacterize the compression behavior, the parameters porosity, permeability and the intrusionbehavior of the GDL into the flow channel are used. Using a computer tomograph, 3D modelsof the compressed GDL are generated in the MEA assembly and the relevant parameters aredetermined in post-processing. Based on the obtained properties of the compressed GDL, HTPEFCsingle cell tests are carried out with two commercial MEAs to show the influence of thechange in properties of the GDL on cell performance.For the ex-situ tests, three different GDL types, namely H2315 C2 from Freudenberg FCCT SE& Co. KG (non-woven), TGP-H-060 from Toray Industries Inc. (paper) and AvCarb 1071HCB(woven) from AvCarb Material Solutions were used. In a first compression cell, the GDLs in theMEA assembly are compressed by a one-sided channel-rib structure with channel widths of0;8 and 1;0 mm, and the porosity, as well as the penetration behavior and permeability are determined.The non-woven and paper GDLs show an equivalent behavior both on the changingcompression and on the variation of the channel width. Regardless of the channel width, theporosity of the three GDLs decreases linearly. Against the background of manufacturing andassembly tolerances, the influence of the flowfield plate misalignment on the intrusion behaviorin five channel pairs was investigated in a second compression cell with constant compression.As the misalignment increases, the point of maximum intrusion depth also shifts and thecatalyst coated membrane (CCM) moves towards the channels.The single cell experiments with varying compression show that for a maximum power density,compressions of up to 15% can be selected for the MEA with non-woven GDL and up to20% for the MEA with woven GDL. A misalignment of the flowfield plates by almost 50%(1 mm) has no significant influence on the performance of an HT-PEFC single cell for bothMEAs investigated.
000893047 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000893047 8564_ $$uhttps://juser.fz-juelich.de/record/893047/files/Energie_Umwelt_537.pdf$$yOpenAccess
000893047 909CO $$ooai:juser.fz-juelich.de:893047$$pdnbdelivery$$pVDB$$pdriver$$purn$$popen_access$$popenaire
000893047 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171318$$aForschungszentrum Jülich$$b0$$kFZJ
000893047 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)171318$$aRWTH Aachen$$b0$$kRWTH
000893047 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000893047 9141_ $$y2021
000893047 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893047 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000893047 920__ $$lyes
000893047 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000893047 9801_ $$aFullTexts
000893047 980__ $$aphd
000893047 980__ $$aVDB
000893047 980__ $$abook
000893047 980__ $$aI:(DE-Juel1)IEK-14-20191129
000893047 980__ $$aUNRESTRICTED
000893047 981__ $$aI:(DE-Juel1)IET-4-20191129