001     893063
005     20210816204450.0
024 7 _ |a 10.1038/s41598-021-91056-y
|2 doi
024 7 _ |a 2128/27912
|2 Handle
024 7 _ |a 34079001
|2 pmid
024 7 _ |a WOS:000678663900015
|2 WOS
037 _ _ |a FZJ-2021-02535
082 _ _ |a 600
100 1 _ |a Altinok, Dilsa Cemre Akkoc
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Common neurobiological correlates of resilience and personality traits within the triple resting-state brain networks assessed by 7-Tesla ultra-high field MRI
260 _ _ |a [London]
|c 2021
|b Macmillan Publishers Limited, part of Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1623073665_28806
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Despite numerous studies investigating resilience and personality trials, a paucity of information regarding their neurobiological commonalities at the level of the large resting-state networks (rsNWs) remains. Here we address this topic using the advantages of ultra-high-field (UHF) 7T-MRI, characterized by higher signal-to-noise ratio and increased sensitivity. The association between resilience, personality traits and three fMRI measures (fractional amplitude of low-frequency fluctuations (fALFF), degree centrality (DC) and regional homogeneity (ReHo)) determined for three core rsNWs (default mode (DMN), salience (SN), and central executive network (CEN)) were examined in 32 healthy volunteers. The investigation revealed a significant role of SN in both resilience and personality traits and a tight association of the DMN with resilience. DC in CEN emerged as a significant moderator for the correlations of resilience with the personality traits of neuroticism and extraversion. Our results indicate that the common neurobiological basis of resilience and the Big Five personality traits may be reflected at the level of the core rsNWs.
536 _ _ |a 525 - Decoding Brain Organization and Dysfunction (POF4-525)
|0 G:(DE-HGF)POF4-525
|c POF4-525
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Rajkumar, Ravichandran
|0 P:(DE-Juel1)164396
|b 1
|u fzj
700 1 _ |a Nießen, Dominik
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sbaihat, Hasan
|0 P:(DE-Juel1)174570
|b 3
|u fzj
700 1 _ |a Kersey, Margo
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Shah, N. Jon
|0 P:(DE-Juel1)131794
|b 5
|u fzj
700 1 _ |a Veselinović, Tanja
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Neuner, Irene
|0 P:(DE-Juel1)131781
|b 7
|e Corresponding author
|u fzj
773 _ _ |a 10.1038/s41598-021-91056-y
|g Vol. 11, no. 1, p. 11564
|0 PERI:(DE-600)2615211-3
|n 1
|p 11564
|t Scientific reports
|v 11
|y 2021
|x 2045-2322
856 4 _ |u https://juser.fz-juelich.de/record/893063/files/s41598-021-91056-y.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:893063
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)164396
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)174570
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131781
913 0 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Neuroimaging
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|x 0
914 1 _ |y 2021
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2019
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-03
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-03
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-03
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 1
920 1 _ |0 I:(DE-Juel1)VDB1046
|k JARA-BRAIN
|l Jülich-Aachen Research Alliance - Translational Brain Medicine
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a I:(DE-Juel1)VDB1046
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21