Hauptseite > Publikationsdatenbank > $P$-wave nucleon-pion scattering amplitude in the $\Delta(1232)$ channel from lattice QCD > print |
001 | 893066 | ||
005 | 20230217124239.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevD.103.094508 |2 doi |
024 | 7 | _ | |a 0556-2821 |2 ISSN |
024 | 7 | _ | |a 1089-4918 |2 ISSN |
024 | 7 | _ | |a 1538-4500 |2 ISSN |
024 | 7 | _ | |a 1550-2368 |2 ISSN |
024 | 7 | _ | |a 1550-7998 |2 ISSN |
024 | 7 | _ | |a 2470-0010 |2 ISSN |
024 | 7 | _ | |a 2470-0029 |2 ISSN |
024 | 7 | _ | |a 2128/27916 |2 Handle |
024 | 7 | _ | |a altmetric:97104319 |2 altmetric |
024 | 7 | _ | |a WOS:000655868700008 |2 WOS |
037 | _ | _ | |a FZJ-2021-02538 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Silvi, Giorgio |0 P:(DE-Juel1)171116 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a $P$-wave nucleon-pion scattering amplitude in the $\Delta(1232)$ channel from lattice QCD |
260 | _ | _ | |a Melville, NY |c 2021 |b Inst. |
264 | _ | 1 | |3 online |2 Crossref |b American Physical Society (APS) |c 2021-05-14 |
264 | _ | 1 | |3 print |2 Crossref |b American Physical Society (APS) |c 2021-05-01 |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1623222713_7446 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We determine the $\Delta(1232)$ resonance parameters using lattice QCD and the L{\"u}scher method. The resonance occurs in elastic pion-nucleon scattering with $J^P=3/2^+$ in the isospin $I = 3/2$, $P$-wave channel. Our calculation is performed with $N_f=2+1$ flavors of clover fermions on a lattice with $L\approx 2.8$ fm. The pion and nucleon masses are $m_\pi =255.4(1.6)$ MeV and $m_N=1073(5)$ MeV, respectively, and the strong decay channel $\Delta \rightarrow \pi N$ is found to be above the threshold. To thoroughly map out the energy-dependence of the nucleon-pion scattering amplitude, we compute the spectra in all relevant irreducible representations of the lattice symmetry groups for total momenta up to $\vec{P}=\frac{2\pi}{L}(1,1,1)$, including irreps that mix $S$ and $P$ waves. We perform global fits of the amplitude parameters to up to 21 energy levels, using a Breit-Wigner model for the $P$-wave phase shift and the effective-range expansion for the $S$-wave phase shift. From the location of the pole in the $P$-wave scattering amplitude, we obtain the resonance mass $m_\Delta=1378(7)(9)$ MeV and the coupling $g_{\Delta\text{-}\pi N}=23.8(2.7)(0.9)$. |
536 | _ | _ | |a 511 - Enabling Computational- & Data-Intensive Science and Engineering (POF4-511) |0 G:(DE-HGF)POF4-511 |c POF4-511 |x 0 |f POF IV |
542 | _ | _ | |i 2021-05-14 |2 Crossref |u https://creativecommons.org/licenses/by/4.0/ |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Paul, Srijit |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Alexandrou, Constantia |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Krieg, Stefan |0 P:(DE-Juel1)132171 |b 3 |
700 | 1 | _ | |a Leskovec, Luka |0 0000-0002-8926-527X |b 4 |
700 | 1 | _ | |a Meinel, Stefan |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Negele, John |0 0000-0002-5713-0039 |b 6 |
700 | 1 | _ | |a Petschlies, Marcus |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Pochinsky, Andrew |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Rendon, Gumaro |0 0000-0002-6807-6760 |b 9 |
700 | 1 | _ | |a Syritsyn, Sergey |0 0000-0003-1189-2940 |b 10 |
700 | 1 | _ | |a Todaro, Antonino |0 0000-0003-3736-9410 |b 11 |
773 | 1 | 8 | |a 10.1103/physrevd.103.094508 |b American Physical Society (APS) |d 2021-05-14 |n 9 |p 094508 |3 journal-article |2 Crossref |t Physical Review D |v 103 |y 2021 |x 2470-0010 |
773 | _ | _ | |a 10.1103/PhysRevD.103.094508 |g Vol. 103, no. 9, p. 094508 |0 PERI:(DE-600)2844732-3 |n 9 |p 094508 |t Physical review / D |v 103 |y 2021 |x 2470-0010 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/893066/files/PhysRevD.103.094508.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:893066 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)171116 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)132171 |
913 | 0 | _ | |a DE-HGF |b Key Technologies |l Supercomputing & Big Data |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Computational Science and Mathematical Methods |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV D : 2016 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a SCOAP3 |0 StatID:(DE-HGF)0570 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1016/j.ppnp.2018.01.006 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRev.138.B190 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 U.-G. Meißner |y 2002 |2 Crossref |o U.-G. Meißner 2002 |
999 | C | 5 | |a 10.1103/PhysRevD.76.037501 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1093/ptep/ptaa104 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevC.86.055203 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.51.158 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/S0146-6410(00)00109-5 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevC.82.055203 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/PL00021654 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/0954-3899/24/10/003 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/S0375-9474(98)00452-7 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.nuclphysa.2010.03.008 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.physrep.2006.09.006 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.nuclphysa.2006.07.040 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevC.74.045205 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1140/epja/i2016-16284-9 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.76.074504 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.84.074508 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.85.054016 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.79.054501 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.82.034505 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.87.074504 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/0370-2693(90)90695-3 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/BF01211097 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/0550-3213(90)90540-T |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/0550-3213(91)90366-6 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/0550-3213(95)00313-H |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 X. Feng |2 Crossref |o X. Feng |
999 | C | 5 | |a 10.1103/PhysRevD.84.114502 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.85.014506 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.85.114507 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.89.074507 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/RevModPhys.90.025001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.22323/1.164.0003 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.87.054502 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.88.031501 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.93.114515 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.95.014510 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.97.014506 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.22323/1.363.0039 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/1742-6596/295/1/012001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.22323/1.334.0089 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.91.034501 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.92.074509 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/JHEP08(2011)148 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.90.074507 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/0370-2693(85)90966-9 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/0550-3213(85)90002-1 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.86.094513 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.nuclphysb.2005.08.029 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.92.094502 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 S. L. Altmann |y 2013 |2 Crossref |t Rotations |o S. L. Altmann Rotations 2013 |
999 | C | 5 | |a 10.1103/PhysRevD.84.074508 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.76.074504 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/JHEP01(2017)129 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.72.094506 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.88.014511 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/1126-6708/2008/08/024 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/0370-2693(82)90134-4 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 F. A. Cotton |y 2003 |2 Crossref |t Chemical Applications of Group Theory |o F. A. Cotton Chemical Applications of Group Theory 2003 |
999 | C | 5 | |a 10.1103/PhysRevD.96.034525 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.102.114520 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/S0370-2693(89)80034-6 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.64.034504 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.69.054501 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/0550-3213(85)90297-4 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/1126-6708/2009/04/094 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/0954-3899/42/3/034011 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.86.034031 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.98.074502 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.79.114502 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/b103529 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.96.114508 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.98.014503 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 L. D. Landau |y 1991 |2 Crossref |t Quantum Mechanics |o L. D. Landau Quantum Mechanics 1991 |
999 | C | 5 | |a 10.1103/PhysRevD.88.014501 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/0370-2693(91)90266-S |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/0370-2693(96)00862-3 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/S0370-2693(97)00049-X |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.73.034003 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.51.158 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.physletb.2010.10.028 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.physletb.2011.02.008 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/b19946 |1 G. Höhler |2 Crossref |9 -- missing cx lookup -- |y 1983 |
999 | C | 5 | |a 10.1103/PhysRevD.93.114508 |9 -- missing cx lookup -- |2 Crossref |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|