A picture is worth a thousand numbers -
Enhancing Cube’s analysis capabilities with
plugins

Michael Knobloch, Pavel Saviankou, Marc Schliitter, Anke Visser, and
Bernd Mohr

Abstract In the last couple of years, supercomputers became increasingly large and
more and more complex. Performance analysis tools need to adapt to the system
complexity in order to be used effectively at large scale. Thus, we introduced a
plugin infrastructure in Cube 4, the performance report explorer for Score-P and
Scalasca, which allows to extend Cube’s analysis features without modifying the
source code of the GUI. In this paper we describe the Cube plugin infrastructure
and show how it makes Cube a more versatile and powerful tool. We present dif-
ferent plugins provided by JSC that extend and enhance the CubeGUI’s analysis
capabilities. These add new types of system-tree visualizations, help create reason-
able filter files for Score-P and visualize simple OTF2 trace files. We also present
a plugin which provides a high-level overview of the efficiency of the application
and its kernels. We further discuss context-free plugins, which are used to integrate
command-line Cube algebra utilities, like cube_diff and similar commands, in the
GUL

1 Introduction

Cube is the performance report explorer for Score-P [14] and Scalasca [10]. The
CUBE data model is a three-dimensional performance space consisting of the di-
mensions (i) performance metric, (ii) call-path, and (iii) system location. Each di-
mension is represented as a tree and shown in three coupled tree browsers, i.e. upon
selection of a tree item the trees to the right are updated. Non-leaf nodes of each tree
can be collapsed or expanded to achieve the desired level of granularity. Figure 1
shows an overview of the Cube GUI.

M. Knobloch - P. Saviankou - M. Schliitter - A. Visser - B. Mohr

Jiilich Supercomputing Centre, Forschungszentrum Jiilich GmbH, 52425 Jiilich, Germany
e-mail: {m.knobloch, p.saviankou, m.schluetter,a.visser,b.mohr}@fz-
juelich.de

2 M. Knobloch et al.

010 Visits (occ) 3 S4e

pc

40.29 _parallel_env_module_NMOD_parallel_initial [0.00 rack 52
(] 0,00 Minimum Inclusive Time (sec) u 4.45e4 __tools module_NMOD_timer [0.00 midplane 1
1M 364.59 Maximum Inclusive Time (sec) W 905.78 __input_output_module_NMOD_input_output - M 100.00 nodeboard 0
[0 bytes put (bytes) W 6.66 _set_values_module_NMOD_set values +H 66.53 nodeboard 2
[] 0 bytes_get (bytes) .52e4 _input_module_NMOD_input -[J 0.00 nodeboard 1
] OALLOCATION Sz (bytesy 03 ssParaliel env.modue _NMOD_parallel_split_init - 93,51 nodecard 1
(] 0 DEALLOCATION_SIZE (bytes) 8.32 _ parallel_env_module_NMOD_parallel_input + Bl 93.43 nodecard 6
[0 bytes_leaked (bytes) 295 59 _ parallel_dd_module_NMOD_parallel_dd - 89.77 nodecard 13
[0.00 maximum_heap_memory_allocated (bytes) 1064.51 _system_values_module_NMOD_system_init M 85.40 nodecard 10
W 5.97e12 bytes_sent (bytes) 943,02 __system values_module_NMOD_system_values_sit * [64.38 nodecard 0
M 5.97€12 bytes_received (bytes) 04 __lebe_module_NMOD._lebc_init + O 58.29 nodecard 7

M 5.1264 _loadbalancing_module_NMOD_find_neighbors - 56.91 nodecard 12
W 131,80 __memory_module_NMOD_memory_ctri -[] 0.00 nodecard 11

W 7867.53 MP_Allgather B N 83.48 MPI Rank 432]

6 I_Irecv
M 8420.97 MPI_Waitall
[] 472 06 __index_module_NMQOD_domain2ijk
"M 4.69e4 _parallel_module_ NMOD_ghost_ejch hangesit

- M 2080.41_interaction_bond_harm

- W 1289.54 _interaction_bond12_mog
8.38e4 MPI_Alireduce

1 7.875 MPI_Barrier

Where is“it in the How is it
source code, distributed across
in what context? % the system

| HEEN0N0NDNEEE BN,
o

What kind of

performance
metric?

Fig. 1: Overview of the Cube GUI. It shows the three coupled tree browsers with the
metric-tree on the left, the call-tree in the middle and the system-tree on the right.

Cube can be used to analyze measurements of all scales, from a laptop to the
largest-scale supercomputers with millions of threads. It is regularly used in the
Jiilich Supercomputing Centre (JSC) Extreme Scaling Workshops [16] and for the
analysis of applications in the High-Q club [7]. These large-scale applications typ-
ically embody an extensive call-tree and a system-tree with thousands of locations.
Without further visualization, an analysis of such large trees is confusing and inef-
ficient.

In recent years, supercomputing systems became more and more complex, both
on the hardware and the software side. Many HPC systems now have heterogeneous
nodes with some form of accelerator attached to the compute nodes. This leads to
a higher variability in programing models used for HPC application development.
In addition to the traditionally used MPI and OpenMP, we now have CUDA and
OpenACC for GPU programming and OpenCL for FPGA’s. All these programming
models require new way of representation in the trees and new analysis methods.

To meet the challenges outlined above, we work continuously on Cube to en-
hance its analysis capabilities and to make it more scalable. With version 4, Cube
evolved from being a simple report explorer to a capable analysis tool [18]. How-
ever, with the monolithic approach, which we followed in Cube for a long time, this
is a daunting task as the code quality degrades and becomes harder to maintain. To
counteract this, we split up Cube in multiple components and distribute it in form of
four separate packages:

e CubeW — A high performance C library to write CUBE files.

A picture is worth a thousand numbers 3

e CubeLib — A general purpose C++ library to interact with and manipulate
CUBE files and a set of associated command-line tools.

* CubeGUI- The graphical report explorer.

¢ jCubeR — A Java library for reading CUBE files.

To add advanced analysis features more easily, we introduced a plugin infrastruc-
ture to the CubeGUI. We separated core parts, that build the foundation of the GUI,
and reformulated the other parts of the CubeGUI as standalone plugins which are
shipped together with the core parts in the CubeGUI package. Plugins, which may
have further dependencies or are not considered stable, are available for download
at our website [3]. Other performance analysis tools follow this route as well, for
example TAU provides a plugin infrastructure as well [15].

The remainder of this paper is organized as following: In section 2 we describe
the plugin architecture in more detail. Section 3 covers context-free plugins and in
section 4 we present plugins that help with the analysis of large-scale applications
by enhancing or replacing the system-tree view. Several other plugins, their use-
case and examples are presented in section 5. These include stable plugins, that are
included in the CubeGUI package and more experimental plugins that are available
in an online repository. We conclude the paper and give an outlook on future work
in section 6.

2 Plugin architecture

The CubeGUI plugin architecture is designed to further advance the extension of
the analysis features of CubeGUI, while at the same time streamlining the extension
process. The first step towards using a plugin infrastructure and the decoupling of
features consisted in defining core functionality and extensions. In this context some
features of the previously monolithic CubeGUI have been classified as extensions
and turned into plugins, even though they always have been part of the CubeGUI.
The core functionality of the CubeGUI consists of Cube file management, GUI
handling and the global calculation mode. The management aspects cover loading
the Cube data and meta data for metric-, call- and system-tree descriptions. The
core elements of the CubeGUI structure are three coupled tree browsers, that can
be seen in Figure 1. Using this three dimensional approach, the calculations happen
in a three step selection process from left to right, each step narrowing the focus
of the calculation. The name Cube is derived from this three dimensional approach.
For the selections single or multiple entries can be chosen, although the metric-tree
only allows selections of the same type, e.g., counts, time or bytes. In this scheme,
the right-most panel represents a point-like value depending on the selections on the
two left panels. The middle panel aggregates along a row-value depending only on
the left-most panel. The left-most panel is an aggregation on a plane value and has
no dependencies, representing the global value. The default setting has the metric-
tree on the left, the call-tree in the middle and the system-tree on the right. However,
the order of panes can be changed, with the respective shift in the calculation order.

4 M. Knobloch et al.

Extensions for the CubeGUI are the foundation of the plugin concept and can
fall into a set of different categories.

The core behavior of CubeGUI assumes to be working on a single Cube file. For
a new class of plugins this is not a requirement, as they work on one or multiple
existing Cube files and create a resulting Cube file in the process. These so-called
context-free plugins will be covered in Section 3.

Cases where more than a single number is used for entries are implemented by
value plugins, which change the handling and display of values in the CubeGUI.
These can for example occur in forms of histograms, small box plots, or a numeric
triple. An application for this plugin is the visualization of TAU [19] profiles in the
CubeGUI, see Section 5.

Aside from numerical values, the CubeGUI represents values through colored
nodes, taken from a global color map. The color mapping allows easy visual iden-
tification of hot-spots and patterns. While the default color map can be configured
to a degree, there are occasions where a more specialized color map is required.
Whether this is a device optimized color map or map highlighting a specific use
case, in either case a new colorMap plugin can be employed.

In Section 4 another category of extensions is presented. There, additional and
alternative visualizations for the default system-tree are presented, with a special fo-
cus on a global perspective. These fall into the category of context-sensitive plugins,
as their value representation is dependent on the selections in the first two panes.

All extensions have the commonality, that they require the use of an API to define
the plugin and interact with the CubeGUI core. This API is part of the overall plugin
architecture and the interface between core and current and future plugins. It realizes
a set of states that can be queried and signals that plugins can react to. For more
detailed information refer to the set of examples in the CubeGUI installation and
the documentation, particularly the CubeGUI Plugin Developer Guide', which is
included in a standard CubeGUI installation.

In the following we present examples for the different categories of extensions.

3 Context-free plugins

As stated in section 2, context-free plugins are a special kind of plugins that are
only available when no Cube files are loaded. They enhance the loading screen of
the CubeGUI to integrate operations that generate Cube files within the GUI. Upon
start, the CubeGUI shows a list of available context-free plugins next to a list of
recently opened Cube files, see Figure 2a.

One main purpose of these plugins is to provide access to the Cube algebra utili-
ties (which are part of the CubeLib package) directly from the GUI These are:

! Plugin development guide: https://apps.fz-juelich.de/scalasca/releases/
cube/4.4/docs/plugins—-guide/html

A picture is worth a thousand numbers 5

Absolute v

& systemtree [l jenga Fett | M statistics sunburst

MaIA wiaishs

1k

JEITG)

Open context free plugin: 08

Cube Diff V1.0.0

Cube Mean V1.0.0 06

B Time
Cube Merge V1.0.0 Speedup

041

Scaling v1.0.0
Tauto ¢ ozl
0 "~ v " @ v o o 'l G
§ & & & & & & & &
s & & & §F & & & £
§ & §F 5 € § ¢ ¢ ¢
AR A A A N A
&8 FdEE 8
S F 5 3 3
(a) Cube - Choosing [ooo 47024 (100.00%) 47084
Context-free Plugin
T
(b) Cube Scaling

Fig. 2: Screenshots of Cube showing the loading screen where the context-free plu-
gins can be chosen (a) and an example of the Scaling plugin in combination with the
Jenga Fett plugin (b) There we plot the time in dark brown and the corresponding
speedup for measurements from 1 to 48 processes.

* cube_merge allows to merge several experiments into a single one and explore
the result. It is typically used for an analysis that requires more metrics than
can be collected in a single measurement, e.g. hardware counter measurements
with PAPI or perf counters, where only a limited number of counters can be
measured simultaneously. It can also be used to enhance a Scalasca trace analy-
sis report (which omits any hardware counter information that might be present
in the trace) with hardware counter information obtained from a profile report.
This is necessary for a detailed POP analysis with the Advisor plugin as pre-
sented in section 5. Further, cube_merge is useful for a comprehensive analysis
of MPMD applications, where each part was measured independently, or work-
flows consisting of multiple executables.

* cube_mean creates an “average” result ouf of several structurally identical mea-
surements in order to smooth the variations in the run-time, introduced for ex-
ample by OS jitter or contention on the network.

* cube_diff creates the difference between two preferably structurally identical
measurements. The typical usage example is the validation of tuning actions
with a “’before optimization vs. after optimization” comparison. It can also
be used to investigate the behavior of an application built with different tool-
chains, e.g. compiler or MPI versions.

6 M. Knobloch et al.

Beside the Cube algebra tools, context-free plugins can be used to integrate other
tools as well. We provide two additional context-free plugins:

e tau2cube enables the CubeGUI to load native TAU performance measurements.
We will discuss the tau2cube plugin in more detail in section 5.

* Scaling: Investigating the scaling behavior of an application is a common task

for an HPC application developer. Either the application is run with the same in-
put on different scales (strong scaling) or the input set scales with the number of
system resources (weak scaling). However, usually only the whole application
or a few kernels are regarded in such an analysis.
The Scaling plugin allows a detailed analysis of the scaling behavior of ev-
ery single routine. For that, a series of “identical” Score-P measurements on
different system sizes is performed. This results in cube files with the same
metrics and a nearly identical call tree. Only the system tree is different in each
of these files. The Scaling plugin gathers the individual measurement results
into one and displays the metric values in dependency of the system size, e.g.
time/#processes. It is recommended to use the Scaling plugin in combination
with the JengaFett plugin (see section 5) to replace the system tree view. Fig-
ure 2b shows an example of the Scaling plugin where the system dimension dis-
plays bar plots for the time per process (dark brown) and the calculated speedup
(light brown). This calculation works for every metric and call-path selection.

4 System-tree enhancements

The system-tree view is the default right-most pane of the CubeGUI representing
the system locations, e.g., processes, threads, CUDA streams etc., used in the mea-
surements. It combines a logical hierarchy of processes and their child threads with
known hierarchal information about the system hardware up to the rack level (e.g.
nodes, midplanes, etc.). Each level can be collapsed and expanded as needed and
the respective levels will show the inclusive or exclusive values, as with the metric-
and call-trees. It also provides the option to define and select subsets that may be
used for example by the box plot plugin as shown in section 4.2.

Figure 3 shows a measurement of MP2C on 4096 processes on a Blue Gene/Q
machine. MP2C [22] is a simulation for multi particle collision dynamics of sol-
vated particles in a fluid. The the system-tree shows the hierarchy levels of the Blue
Gene/Q from rack to node card. Since MP2C is a MPI only application, the node
level hierarchy is limited to processes. This example will be used to showcase the
visualization alternatives presented in this section.

The reason for introducing alternative system-tree visualizations lies in the scope
and variation of applications and users’ analysis needs, where one solution rarely
meets all requirements. Most of the time a combination of different view points on
the same data, is the most helpful approach. Therefore, the intent of this category
of plugins is not to replace the system-tree, and instead offer a set of different per-
spectives to be used in unison. With that in mind, the plugins are not completely

A picture is worth a thousand numbers 7

Brocres Mo Bl

Wsern o | Bgarer | s | Mlsutuns | Moricy [r §
[l 8.40e10 Visits (occ) © -M 1.54e4 mpc | - 0.00 machine Blue Gene/Q i
+ Wl 240.29 _ parallel_env_module_NMOD_parallel_initial -1 0.00 rack 52 B
[1 0.00 Minimum Inclusive Time (sec) B 4.45e4 __tools_module_NMOD_timer -[J 0.00 midplane 1 H
364.59 Maximum Inclusive Time (sec) » M 905.78 __input_output_module_NMOD_input_output - @ 100.00 nodeboard 0
[0 bytes_put (bytes) » M 6.66 _set_values_module_NMOD_set_values +[@ 66.53 nodeboard 2
[0 bytes_get (bytes) »H 6.52e4 _input_ module_NMOD_input -] 0.00 nodeboard 1
L] 0 ALLOCATION_SIZE (bytes) M 0.03 _parallel_env_module_NMOD_parallel_split_init » M 93.51 nodecard 1
[] 0 DEALLOCATION_SIZE (bytes) W 908.22 _parallel_env_module_NMOD_parallel_input » Ml 93.43 nodecard 6
L] 0 bytes_leaked (bytes) » Ml 6295.59 _ parallel_dd_module_NMOD_parallel_dd » M 89.77 nodecard 13
[0.00 maximum_heap_memory_allocated (bytes) | M 1064.51 _system_values_module_NMOD_system_init + Bl 85.40 nodecard 10
5.97e12 bytes_sent (bytes) M 5943.02 _ system_values_module_NMOD_system_values_sit T 64.38 nodecard 0
(W 5.97e12 bytes_received (bytes) M 0.04 _lebc_module_NMOD_lebc_init T 58.29 nodecard 7
-H 5.12e4 _loadbalancing_module_NMOD_find_neighbors » I 56.91 nodecard 12
W 131.80 _memory_module_NMOD_memory_ctrl] 0.00 nodecard 11
W 7867.53 MPI_Allgather
W 3788.88 MPI_Barrier [84.12 MPI Rank 433
M 746.11 MPI_isend 1 79.61 MPI Rank 434
W 1267.60 MPI_lrecv [75.48 MPI Rank 435
W 8420.97 MPI_Waitall [65.98 MPI Rank 436
0 62.32 MPI Rank 437
W 472.06 _index_module_NMOD_domain2ijk [55.27 MPI Rank 438
» B 4.69e4 _parallel_module_NMOD_ghost_exchange:_slt [51.78 MPI Rank 439
> M 2.36 __parallel_module_NMOD_set_molecules O 55.71 MPI Rank 440
- W 4416.46 _interaction_module_NMOD_interaction Ll 42.18 MPI Rank 441
W 4366.98 __tools_module_NMOD_timer O 51.90 MPI Rank 442

M 339.11 _interaction_init_moduie_NMOD_interaction_init

- witaonssemens

Fig. 3: MP2C measurement example with 4096 processes on a Blue Gene/Q high-
lighting the limited global overview with the default system-tree due to the limited
number of locations shown at the same time.

disconnected in their function and allow selections in one view to update selections
in others where applicable. With the ability to detach views, these can be viewed
side by side.

Any measurement containing notably more locations than the standard view size
of the system-tree in the CubeGUI presents a challenge for its comfortable use.
In Figure 3 the number of processes able to be shown at the same time is limited
and even collapsing the tree to node card level will not improve that notably. In
consequence, the user has to spend time scrolling to specific locations and looses
the global view over all locations. In turn, this may lead to missing patterns in the
behavior of the current metric when spanning multiple locations. To alleviate this
issue, various Cube plugins have been introduced to enhance the system-tree view
or to offer alternative visualizations.

The following section highlights alternatives that use numerical or visual presen-
tations and, in case of topologies, incorporate additional data to create the visualiza-
tion.

4.1 Sunburst

This plugin displays the system-tree data in a 360 degree sectored disk [20]. It al-
lows the visualization of the whole system-tree in a relatively limited space which
provides a global overview over the value distribution of a metric over the entire
measurement.

The system-tree hierarchy is reflected in the rings of the sunburst view, from the
highest level at the center to the location level on the outermost ring. Any selec-

8 M. Knobloch et al.

tion of locations or levels is mirrored in the system-tree panel and vice versa. The
sunburst view can be manipulated to show different levels at the same time through
expanding and collapsing different selections. Settings for behavior and visual style
can be accessed through a context menu.

In continuation of the initial example of Figure
3, Figure 4 shows the same metric and call-path se-
lection to highlight the differences. While in the the
system-tree none of the location sub sets reveal a pat-
tern directly, in the sunburst view the regular pattern
becomes immediately recognizable. While the sun-
burst view does not show numerical data directly, ex-
cept through mouse-over on slices of the respective
levels, it aids in the identification of locations that jus-
tify further investigation. Making selections here will

update the system-tree view accordingly and will al- Fig. 4: MP2C example with
low a closer look. an equivalent sunburst view

of Figure 3.

4.2 Statistics: Box and Violin Plots

The Statistics plugin gathers data for the selected met-

ric values from the system-tree and displays these in

form of a box plot [9]. The statistical data is represented as maximum and minimum,
quartiles, as well as mean and median.

This plugin allows fast access to global numerical data of a measurement and
can serve as entry point by offering a global perspective as well as highlighting
more detailed imbalances, depending on the chosen metric and call-path selections.

For a detailed analysis, there also exists the option to define subsets of nodes,
processes or locations and limit the statistics calculation to that subset.

The violin plot [11] is similar to the box plot, however it additionally presents the
distribution of the metric values. This allows the identification of partitions within
the system and highlights peaks in multi-modal measurements, which are an indi-
cation for the existence of performance issues within the measurement. In combina-
tion with the Sunburst of section 4.1 or the topology plugin of section 4.3 this aids
in matching the general distribution or specific partitions to sets of locations. The
statistics plugin also offers the numbers in tabular form for easy access.

Figure 5 uses the MP2C example from before, and shows a concentrated partition
with only a few outliers, which is the expected result based on the visual impression
of the sunburst in Figure 4. In this case the shape of the violin plot does not reveal
too much additional information. Compared to this, the example of Figure 6, looking
at a different region of the same experiment, highlights multiple partitions for the
respective selection. As mentioned before, not all visualizations provide the most
insight for every use case and therefore they should be used together to reveal the
most significant issues.

A picture is worth a thousand numbers 9

peer distrbution

T eer dibution)
B systemtree B jenga rett | M stotitcs | B sunourst | B WP Cortesin_16x16x16 | BBoC | § B systemvee | Bjengo rett | Mistatistcs | B sunburst | WP Cartesion 16x16x16 Moc || §
10000 w019 2 10000 o | f

2 2
g g
8000 5000
e000 c000
2000 1000
2000 2000
oo 2050 o 2051
o boxpie Vi ot sox it © Vil ot
B w 09 F® S 97
x X

(a) Box plot (b) Violin plot

Fig. 5: MP2C example showing a statistics perspective of the selections and data
from Figure 3.

Hsysemiree | Bjenge rere | Mlstatsics | Msunburst B wpLCartesian 1616316 | BEacc > § ce | Bljenga rett | Mistatistics | Bisunburst | B et Cantesion 16x1616 Mocc 2| §

10000 - s 2 10000 301 | %
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

b x

(a) Box plot (b) Violin plot

Fig. 6: Different function selection on the MP2C example, highlighting a distribu-
tion with partitioned clusters.

4.3 Topologies

The topology plugin, compared to the sunburst and statistics plugin, is not just a
different view on the same system-tree data as it incorporates additional informa-

10 M. Knobloch et al.

tion about neighborhood relations between locations. This additional structural data
can be defined by MPI Cartesian calls, Score-P user instrumentation or platform
specific interfaces, e.g., the 5D torus of a Blue Gene/Q like the now decommis-
sioned JUQUEEN [21] in Figure 7b. More details on the creation and recording of
topologies can be found in the user documentation on the Score-P website [4].

The main component of the topology plugin is the 3D display of the topology
data. It allows the visualization of up to three dimensions directly, while for higher
dimensional data dimensions have to be combined through either folding or slicing.

Folding in this context represents the concatenation of two or more dimensions
into one visual dimension. By Slicing on the other hand, the user chooses single
values for a subset of dimensions and displays the remaining dimensions in the
plugin. Both methods reduce the number of visual dimensions effectively to three
and allow the visualization of topologies with an arbitrary number of dimensions.
The arrangement and order of dimensions can be controlled by the pull-up control
field at the bottom of the plugin. Controls for a more fine grained adjustment of
the 3D view can be found in the topology toolbar. Additional settings for the visual
appearance of the 3D view are available in the Plugins menu. As with the sunburst
plugin mouse-over reveals the numerical information to the visual data.

The sunburst view showed a repeating pattern for the selected call-path in the
MP2C example. Figure 7a displays the used MPI topology, which was automati-
cally created from the MPI data by Score-P. This visualization now reveals that the
repeating pattern represents a hot-spot in the communication pattern, as the view in-
corporates the Cartesian structure provided by MPL. In Figure 7b the same selection
is presented in the platform topology of JUQUEEN, showing the seven dimensions
of the Blue Gene/Q architecture. This shows the physical placement of processes
and threads within the 5D torus and the assignment to cores and hardware threads
within their nodes. In this figure the example uses folding to arrange the dimensions.
With high dimensional topologies this may require checking various dimension or-
ders, but as the example shows hot spots can be identified as with the MPI topology.
The additional hardware information can lead to the identification of issues with the
chosen partition within the system or of outside influences that are not caused by the
application itself. As this combines logical with physical locations, threads have to
be bound to cores for the duration of the application run, otherwise an unambiguous
matching is impossible.

Aside from a straightforward Process x Threads topology, which is a two dimen-
sional mapping of the system-tree and can be generated for every measurement, all
other topology types require additional input from the application, the user or the
system under investigation. That makes them a conditional tool to be employed if
the use case matches the requirements. This showcases that the topology plugin,
like the other plugins presented in this section, should and have to be used in con-
cert with each other and that there is no hard rule for when one plugin should be
preferred over the others.

A picture is worth a thousand numbers 11

17l

(a) MPI Cartesian 16x16x16 (b) Blue Gene/Q 5D torus

Fig. 7: Topologies for the MP2C example of Figure 3.

5 Other Plug-ins

All plugins presented so far fit in Cube’s 3-dimensional data model with a metric,
a program and a system dimension. However, the plugin architecture is not limited
to this scheme. In this section we present plugins that still work on the selected
metric and call-tree item, but either open a new window or show their results in
the rightmost panel, but independent from the system-tree. For that we extended the
right-most panel by a tabs to switch between the system dimension and the other
plugins.

Integration in the Score-P ecosystem

One of the major goals of the Score-P ecosystem is the interoperability of distinct
performance analysis tools built upon the common measurement infrastructure. This
is ensured by common data formats for profiles - the CUBE4 format - and traces -
the Open Trace Format 2 (OTF2) [8]. OTF2 trace files can be analyzed manually by
Vampir [13] or automatically by Scalasca [10].

12 M. Knobloch et al.

Vampir connector

While it is already useful to be able to analyze the same trace data manually and
automatically, it would be preferable to use the results of the Scalasca trace analysis
for a following in-depth analysis with Vampir. Scalasca stores detailed information
of the most severe instances, i.e. the instance with the longest waiting time, for each
performance inefficiency pattern it detects. While this is unambiguously for point-
to-point communication, it is defined as the instance with the largest sum of waiting
times of all involved processes/threads for collective communication. This is not
necessarily the one with the largest individual waiting time.

70,00 M
4 0,00 MP{_Finalize

(b) Vampir zoomed to most severe instance

(a) Cube — Context menu to
open Vampir

Fig. 8: Screenshots showing the Vampir connector plugin. The user can start Vampir
directly from the CubeGUI (a), which opens the trace at the relevant point in time

(b).

If Vampir and the D-BUS components are installed on the same machine it is
possible to connect the CubeGUI to the trace browser and view the state of the
analyzed program at the point of the occurrence of the most severe instance of the
selected pattern. Figure 8 shows an example using the JURASSIC (Juelich Rapid
Spectral Simulation Code) application [12]. The user has to select the desired metric
in the metric-tree and then right-click on the respective instance of that pattern in
the call-tree to open Vampir, as shown in Figure 8a. Here the selected metric is
the ”Wait at OpenMP barrier” and the interesting instance is the implicit barrier at
the end of the main loop. This in turn opens Vampir (in a separate window) at a
reasonable zoom level so that the pattern and some application activity before and
after is visible, see Figure 8b. We see the last three iterations of the computational
loop with the typical increase in waiting time due to load-balancing issues.

A picture is worth a thousand numbers 13

tau2cube and Tau Value display

TAU [19], as part of the Score-P ecosystem, can open CUBE4 files natively. That
does not hold for the opposite direction. We provide a (context-free) plugin called
tau2cube to enable the CubeGUI to load native TAU measurements. It is possible to
load and directly merge multiple TAU measurements, which is useful as TAU stores
all recorded metrics in distinct files, with the exception of the time metric, which is
present in each file. Figure 9 shows an example of a TAU measurement with four
metrics. Note that we see a flat call-tree as TAU stores only flat profiles.

Fle Display Plugins Help

synchonizesateor. [B
Absolute | [avsotute | [avsolute g
B metrictree B caiiwree |[E] Fiatview, B systemree | Ml Statistics | I8 Sunburst 3

7.08e12 PAPI_NATIVE_VPU_ELEMENTS_ACTIVE (occ) “0 0 Machine 7
8.46€6 CALLS (occ) & 777611 MFIX [{mfix pp) (62.7)-(478.22)] B]
® 4.21e4 PARALLEL_MPI::PARALLEL, \NIT[(paraHe\ mpi_mod. @ 4.01e10 o
® 1.45e5 TIME (sec) ® 2.55e4 MPI_Init() 4.01e10 E
w 5.13e7 PARALLEL_MPI::MPI_CHECK [{parallel_mpi_mod.pp. u 3.99e10
® 1.63e3 MPI_Comm_size() @ 3.96e10
@ 1,633 MPI_Comm_rank() @ 4.00e10
® 7.682 GEN_LOG_BASENAME [{mfix.pp.f} {488,7}-{514,37 @ 7.40e10
® 7.682 MACHINE::MACHINE_CONS [{machine_mod.pp.f} {¢ 3.98¢10
® 7.68e2 MACHINE::GET_RUN_ID [{machine_mod.pp.f} {93,7 @ 4.03e10
® 6.24e4 MACHINE::WALL_TIME [{machine_mod.pp.f} {139,7 a 7.42¢10
® 2.34e9 INPUT_DATA @ 7.50e10
® 2.34e9 GET_DATA [{get_data.pp.f} {10.7}-{176,29}] 4.00e10
w 5.79e8 INIT_NAMELIST [{init_namelist.pp.f} {22,7}-{3473,: u 4.01e10
® 7.33e5 DES_INIT_NAMELIST {{des_init_namelist.pp.f} {22,7 @ 4.03e10
w 8,482 QMOMK_INIT_NAMELIST [{gmomk_init_namelist.pp.! 4.01€10
® 7.84€2 USR_INIT_NAMELIST [{usr_init_namelist.pp.f} {19,7 @ 3.98¢10
® 1,556 CARTESIAN_GRID_INIT_NAMELIST [{cartesian_grid_i a 7.40e10
® 1.10e7 READ_NAMELIST [{read_namelist.pp.f} {9,7}-{490,
® 1.87e5 UTILITIES::SEEK_COMMENT [{utilities_mod.pp.f} {2!
® 1.87e5 REMOVE_COMMENT [{remove_comment.pp.f} {13,
® 1.42e5 UTILITIES::BLANK_LINE [{utilities_mod.pp.f} {4527
w 8.86e4 UTILITIES::LINE_TOO_BIG [{utilities_mod.pp.} {405
® 8.44e6 READ_NAMELIST:SET KEYWORD [{read_namelist.pj
w 8.68e4 MAKE_UPPER_CASE [{make_upper_case pp.f} {23,7
@ 8,684 REPLACE_TAB [{make_upper_case pp.f} {95,7}-{12
® 8,684 REMOVE PAR BLANKS [{remove_comment.pp.f} {5
® 2.02e5 PARSE_LINE [{parse_line.pp.f} {22,7}-{424,31}]
® 3.84e3 PARSE_LINE::END_RXN [{parse_line.pp.f} {251,7}-(
® 3.84e3 PARSE_LINE::START_DES_RXN [{parse_line.pp.f} {21
® 3.84e3 PARSE LINE::START_RXN [{parse_line.pp.f} {171,7}
w 6.48e4 PARSE_ARITH [{parse_line.pp.} {450,7}-{592,32}]
® 1.15e4 UTILITIES::SEEK_END [{utilities_mod.pp.f} {350,7}-
Soooo s e emes (16 elements) v
o 56112 10000%) oo 777611 (10000%) 777efo 0000%) T7e
[Ll B
x

Fig. 9: Cube showing the merged result of 3 TAU measurements. We see a flat call-
tree originating from TAU’s flat profiles and no names of the nodes in the system-
tree, as TAU does not store them.

Score-P is able to collect a statistic of metric values for every call-path. These
are called ”Tau Tuples” as they follow the same structure as the tuples introduced
by TAU. It is possible to display them as a small box-plot in the metric- and call-
tree. This allows to get an overview about statistic behavior along the call-tree or
system-tree

ScorePion

With instrumentation being the default measurement mode of Score-P, measurement
overhead is a factor to consider in many analyses, especially of C++ applications
with many small functions that get called frequently. To mitigate that effect we
can use filtering, i.e. mark functions to not be measured (run-time filtering) or not
be instrumented at all (compile-time filtering). The GNU compiler uses the same

14 M. Knobloch et al.

format for compile-time filtering as we use for run-time filtering in Score-P. The
format of the filter file used by the Intel compiler? varies slightly.

Fle Display Plugins Help

ateor... B Restoresetting v Savesettings Deltesettings | (> 1) | Y., ., [Number o counters 0

[

H
wee a i
8e3 Time (sec) @ 4.00e8 raytrace ul B
2.59¢7 Visits (occ) z Reduce aores
>0 0 MPI synchronizations (occ) > 1.20e9 formod_pencil SCOREP TOTAL MEMORY csser 2
>3 0 MPI pair-wise one-sided synchronizations (occ) > @ 2.75€7 srcfunc_sca_sun H
> 6 MPI communications (occ) > @ 6.19€8 srcfunc_sca Fiter rues
>0 0 MPI file operations (occ) 3 T
> m 96 MPI bytes transferred (bytes) z Incude File @
> @ 2.73€3 Delay costs (sec) z 5
>3 0.00 MPI point-to-point wait states (propagating vs. terminc | > @ 5.94e8 1Somp parallel @forwardmodel.c:39
>3 0.00 MPI point-to-point wait states (direct vs. indirect) (sec) 9.83e4 1Somp implicit barrier @forwardmodel.c:45
> @ 1.69e2 Critical path (sec) > @ 5.94¢8 Somp for @forwardmodel.:39
>@ 8.12e3 Performance impact (sec) ® 1:23e4 read_obs
» @ 4.60e2 Computational imbalance (sec) ® 1.23¢4 read_atm Excude Region ©
| 6.23¢8 Total size of full trace (bytes)[_] > 6.23e8 call_formod o
6.23e8 Total size of reduced trace (bytes) | > @ 6.21e8 formod e

m 1.23e4 hydrostatic
1.23e4 formod_fov
= Exclude File @
i Ihomec/izam1jzam1129/urecarpop/urassiciurassicisrescatierc
> ® 1.18e4 scan_ctl
™ 5.90e3 atof
3.962 MPI_Reduce
m 2,882 find_emitter
1.44€2 MPI_Init
® 1.44e2 MPI_Finalize
1.44e2 read_thl
® 1.44e2 read_shape
> @ 6.23¢8 main
> ® 11led read_ctl
w 1.44e2 MP|_Comm_rank
® 1.44e2 MPI_Comm_size

o 6.23¢8 (100.00%) . 2355‘ ‘a 2.00e8 (16.68%) 1.2089]
L N

Fig. 10: Screenshot of the ScorePion plugin. In the right pane it shows the stacking
of filter rules and information on trace size and memory requirements.

With the ScorePion plugin we enable the creation of a Score-P or Intel filter file
directly from the GUI. The user simply right-clicks on a call-tree item to add or re-
move it from the filter. The ScorePion plugin generates additional metrics for Score-
P measurement system memory requirements, the resulting trace size (after applying
the filter), and the expected impact on measurement overhead, see Figure 10. All the
advanced features of the Score-P filter file like black- and white-listing of functions
and files, stacking of filter rules and wildcards are supported by ScorePion.

Iteration profiling

Score-P enables the user to mark loops via its user instrumentation API and record
each iteration of the loop independently. The default representation of such a loop
is a separate call-tree node for each iteration, which makes an analysis of loop-
dependent behavior very difficult for loops with many iterations. We provide two
plugins for a graphical analysis of iteration-dependent behavior. Figure 11 shows an
example of both plugins with the TeaLeaf [5] application. It clearly shows that every
12th iteration shows a different behavior from the previous 11. This is due to a func-
tion that is called only every 12th iteration. The Barplot plugin plots the value of the

2 Intel compile time filtering API description: https://software.intel.com/en-
us/cpp-compiler—-developer-guide-and-reference-tcollect-filter-
gtcollect-filter

A picture is worth a thousand numbers 15

Wi Elrsen

' 1.2083195577 mo_util sysinfo.util 0s system

[p H Boenme Bomace | B B | B

w 0.0001120107 mo_master config.srestart._
' 0.0053637656 mo_nh_dtp interface.compiite sirmass_
I 00833400651 mo_rh_stepping.init_exner old

W 00001602116 mo_restart aftributes.getattributesforr

= 00000726311 supervise init_supervise_nh_

W 0.0001965933 mo_nh_supervise.finaize_supervise_nt F1r1r1r111101 11
& 0.0001377714 o real timer.timer
w 0.0034287371 o nh_stepping.dealocate nh_stepping,
+ @ 0.3027313954 mo_aimo_nonhydrostati.desiruct atmo_n¢
+ 74633943554 mo_real fimer timer_report
+ 3 03900923728 mo_atmo_model, destruct_aimo_model_
21 0.0000000000 MPI_Barrier
3 0,0000000000 MPI_Finalize:

EEEH BESEEEanss
HE5EE 3333353
33 2pBo2eReERs,
2228, 38238REE
£HE2E, SEeFegREsE
=4 283380 £33
BEZosRsissrgnzesaz
A R R R
SOER EE5iE5585e555E

(a) Barplot (b) Heatmap

Fig. 11: Screenshots of an iteration profile of TealLeaf using the Barplot (a) and the
Heatmap (b) plugin, showing the Time metric in each case. Both views show an
anomaly every 12th iteration.

selected metric vs. the iterations of the loop. The value can be the minimum, maxi-
mum or the average across all system locations. Further, a stacked bar of minimum,
average and maximum is possible, as shown in Figure 11a. The Heatmap plugin
(Figure 11b) plots locations vs. iterations with the value being color-coded accord-
ing to the currently chosen color palette. The color palette can be changed using
the Colormap plugin. Next to the standard rainbow palette, Cube provides a con-
figurable gradient, double gradient, helix, and different standard gradient palettes.
Using those, specific values such as the median or extrema can be emphasized. It
also allows to adopt visualization for screenshots used in printing or presentations.

Blade

Scalasca’s automatic trace analysis guarantees to cover the entire trace data, but the
generated report omits the time dimension. However, often it is necessary to look
at the dynamic behavior of the analyzed application with a timeline-based trace
browser. The standard tool for this task in the Score-P ecosystem is Vampir, a very
powerful OTF2 trace analyzer with many customizable displays. Vampir however is
a commercial tool and typically only available on larger supercomputers. For small-
scale experiments a quick glance on the trace is often enough to identify perfor-
mance problems. For that we provide Blade, a simple OTF2 trace explorer, which is
integrated in the CubeGUI. Thus, it allows a quick look on the tracing experiments
with respect of the selected call-path and simple filter rules.

16 M. Knobloch et al.

(a) Blade — Full trace view (b) Blade — zoomed to iteration level

Fig. 12: Screenshots of the Blade plugin for an execution of JURASSIC. User rou-
tines are colored green, MPI routines purple and time spend in OpenMP in orange.

Figure 12 shows screenshots of the Blade plugin. A view of the entire application
execution is shown in Figure 12a. Figure 12b shows the same information in Blade
as Figure 8b shows in Vampir, i.e. the iterations with the highest waiting time in
the OpenMP barrier. Vampir shows a lot more information, but the general structure
of the imbalance leading to the wait-state is also visible in Blade. However, the
automatic zooming to the most severe instance is not (yet) available for Blade, so a
complete manual analysis is required in this case.

Program structure

Raw performance data is often very hard to interpret without detailed understanding
of the applications algorithm and implementation. We developed two plugins to
help the performance analyst to assess the structure of the application by providing
a complete Call Graph and its implementation by linking performance data to the
source code. Figure 13 shows examples of both plugins.

Call graph

This plugins displays the call-tree in form of a graph. The unique regions are the
nodes of the graph and aggregated metric values are assigned to the edges. A call-
graph can help to detect critical calls in an application with a complex call-tree
more efficiently. This plugin generates the call-graph in the dot format and thus
depends on a Graphviz? installation. A new Window is opened containing the graph,
as presented in Figure 13a.

3http://www.graphviz.org

A picture is worth a thousand numbers 17

Source Code Viewer

Source code viewer with syntax highlighting for C/C++ and Fortran. The viewer,
like the system view, is linked to the call-tree, i.e. selecting a different call-tree node
automatically shows the respective source code region. An example is shown in
Figure 13b, highlighting the main OpenMP loop of the JURASSIC application.

Metric correlation

Often it is necessary to regard the combination of multiple metrics in order to get
a complete picture of the application performance characteristics. To spare the user
from clicking through the metric-tree we provide two plugins that help to identify
correlation between metrics.

Jenga Fett

The Jenga Fett plugins allows to display metric values as bar charts along the system
locations. It offers two modes: First, a stacked bar chart to display a whole metric
sub-tree in one bar per process/thread as shown in Figure 14a, presenting the whole
Time metric sub-tree. In the second mode, Jenga Fett allows to present multiple
metrics as independent bars next to each other. The performance analyst can so
easily spot correlations between the metrics. Figure 14b shows an example putting
time and L2 cache misses (PAPI_L2_TCM) next to each other. It is clearly visible
that processes with many cache misses have a high run-time while processes with a
short run-time have only a few cache misses*. Another good use-case for this type
of analysis is the Scaling plugin we presented in Section 3.

Advisor

Performance assessment of a parallel program can be a daunting task, as the causes
of performance problems can be manifold. Major problems are a bad workload dis-
tribution, an inefficient communication scheme and a bad utilization of the system
resources. In the course of the Performance Optimisation and Productivity Centre
of Excellence (POP [1]) a methodology was developed to allow the performance
analyst to acquire a standardized assessment of the code under investigation. This
results in a hierarchal set of metrics [2] that quantify the relative impact of various
performance factors. These metrics in general have a value between 0 and 1 (or 0%
and 100% respectively), with a higher value being better.

4 The application was a matrix-matrix-multiplication benchmark with alternating column-major
and row-major outer loops

18 M. Knobloch et al.

CubeGUI-4.4.0latest-trunk: scorep_jacobi_opencl2x12.trace/summary.cubex x
Fle Display Plugins Help

| Restore stting ~ save settings | [

Absolute ~| | Absolute ~| B score-p Configuration || Scoreplon | Bl Source ¢
g
1B veuicuee I covee |] Flatview Ve e :
0 000 Time (seq) -H x 1 SCOREP_ENABLE PROFILING e H
> @ 277.11 Execution = z
ra z 2 SCOREP_ENABLE TRACING true]
- < 3 SCOREP_ENABLE UNWINDING false e
E tes transferred (b ® 2 MPIBarri - - x
+ 0 0 M fl operations (0cc) 2 !

+ B 1.25 Computational imbala z

0 000 Minimum Inclusive Tir Vo
® 56.72 Maximum Inclusive T v @ 1cess
O 0 ALLOCATION_SIZE (bytes
01 0 DEALLOCATION.STZE (byt 1928 WP
0 0bytes_leaked (bytes) 1928 W)
0 000 maximum_heap._mem 1929 e
5,146 Totalsize of ful trac 1929 e
8 50066 Totalsize of reducer ro
0.21 Total measurement o\ » O 6.94e4 1§
® 021 Reduced measuremer o

o

-

a

1928 sjacobi |
1928 $copy_kel

o 27zes(10000%) 212e5| [o

(a) Call Graph View

Eile Display Plugins Help

Restore Setting - Save Sttings
Absolute ~ | Absoluts. [score-p configuration | B source o
B vetric tree Ecatree | EJriatview 29 §
" |-= 0.6041414 main 30
2.5928980e7 Visits (occ) s 3.7011882e2 MPI_Init 31 f(ctl->retnn || ctl->retrr || ctl->retss) { =
© 0 MPI synchronizations (oc = 0.0002334 MPI_Comm_rank 32 get_opt_prop(ctl, aero); H
o 0 MPI pair-wise one-sided ¢ = 0.0000660 MPI_Comm_size 33
6 MPI communications (oc¢ | = 1.3422215 read_ctl 34
o 0 MPI file operations (occ) » = 0.0059479 scan_ctl 35
»w 96 MPI bytes transferred (k= -= 0.0577758 call_formod 36°0rmod_pencil(ctl, atm, obs, aero, ctl->sca_mult, 0);
u 2.7315149e3 Delay costs (u 1.0663468e2 read_obs 37 -
£ 0.0000000 MPI point-to-po u 78.0681273 read_atm 38ifdef OPENMP
© 0.0000000 MPI point-to-po = 76.5029887 read_aero 39pragma omp parallel for schedule(dynamic) private(ir,id)
= 1.6913854e2 Critical path u 1.2917578e2 get_opt_prop 40endif
= 8.1186497e3 Performance -w 0.0468962 formod 41
»u 4.6014728e2 Computation = 0.0032804 hydrostatic 42
» = 1.7388997e3 formod_pencil 43for(ir=1; ir<obs->nr; ir++){
44 formod_pencil(ctl, atm, obs, aero, ctl->sca_mult, ir);
= 0.0031285 formod_fov 45}
= 2.2585570e2 write_obs 46
= 13.6110443 MPI_Reduce 47
= 83.0933967 MPI_Finalize 48ormod_fov(ctl, obs);
49
50
51 f(ctl->write_bbt)
52 for(ir=! <obs->nr; ir++)
53 for(id=0; id<ctl->nd; id++)
54 obs->rad[id][ir]=brightness(obs->rad[id][ir], ctl->nu[id]);
[0.0000000 8482.4001492 (100.0000000%) 8482.4001492| ‘n 0000000 '5658.3761939 (66.7072538%) 8482. Annusz‘ gz
[R
x

(b) Source Code View

Fig. 13: Screenshots of the Call graph plugin (a) and the Source Code Viewer plu-

gin (b).

A picture is worth a thousand numbers 19

Flle Display Plugins Help

‘ Restore Setting ~ Save Settings ‘m

Absolute ~| | Absolute ~| | Absolute M5
i
B Vetric tree [calltree Flat view [system tree | [Blade Jenga Fett | [l statistics | [sunburs J
~ 0 0.00 Time (seq) 2
0.07 $jacobi_kernel
0.22 Overhead ® 0.04 Scopy_kernel [}
» @ 1208.81 Idle threz 3
2.12€5 Visits (occ) 50
» @ 1.58e7 Bytes transfel
» O 0 MPIfile operations.
» @ 1.25 Computational |
O 0.00 Minimum Inclus
56.72 Maximum Inch o
O 0ALLOCATION_SIZE
O 0 DEALLOCATION_SI
O 0bytes_leaked (byte
O 0.00 maximum_heap
30
20
10
0 l’\l’!\l!!’l!!!\&bl!!!!!’l!!!lb
I N S S RIS 5 S U G S S S N
A A A 2 S S A N S A A 5 N
F PP EEPIRIIEIELEELELELEEeEP
ST EET IS ETTELE
S S S ST 8888 T ESFESSFEESES
§SSSSSSSSss TS5
—
[0.00 277.11 (18.65%) 14&5,1‘1‘ 000 277.00(100.00%) 277.00‘ ‘oou 277.00 (100.00%) 277.00]
(a) Jenga Fett — Stacked bar plot
[system tree Jenga Fett [statistics [Sunburst
1k
0.8
0.6 F
0.4 F
0.2 F
0 ! ! ! ! I | L L
) ~ ’\/ m w © © A
¥ ¥ & & & & & &
& & 3 & & & & &
& & < & & & & &
& & & & & & & &
& & & & & < < &

(b) Jenga Fett — Metric correlation plot

Fig. 14: Screenshots of the two modes of the Jenga Fett plugin. A stacked bar plot
of Time (sub-)tree (a) and the correlation of multiple metrics (b). Here time and L2
cache misses are plotted next to each other and a clear correlation is visible.

20 M. Knobloch et al.

The Advisor plugin makes the POP methodology metrics [2] available in the
CubeGUI. Currently the following metrics are regarded:

e Parallel Efficiency: determines the performance loss when distributing compu-
tational work over the processes of the system. It is calculated as the product of
Load Balance and Communication Efficiency.

e Load Balance: is the ratio of the average computation time (across all processes)
and the maximum computation time (i.e. run-time without communication and
synchronization).

e Communication Efficiency: is the maximum (across all processes) of the ratio
between computation time and total run-time. Communication Efficiency iden-
tifies when code is inefficient because it spends a large amount of time com-
municating rather than performing useful computations. It is composed of two
additional metrics that reflect two causes of excessive time within communica-
tion, Serialisation Efficiency and Transfer Efficiency

e Serialisation Efficiency (SerE): measures inefficiency due to idle time within
communications (i.e. time where no data is transferred).

* Transfer Efficiency (TE): measures inefficiencies due to time in data transfer.

Further we report some hardware counter related metrics:

* Stalled resources: The ratio of cycles a processor was stalled and total CPU
cycles.

¢ Instructions: The total number of “useful” instructions being executed, i.e. not
counting instructions in spin-wait phases.

* IPC: Instructions Per Cycle (IPC) is the number of useful instructions by CPU
cycles and commonly used to determine the utilization of the processor. How-
ever, this metric alone can be misleading as the performance of an application
strongly depends on the instructions being executed, i.e. a lower IPC can be
better if vector instructions are used instead of scalar instructions.

The POP metrics can be calculated at any level of granularity - the whole appli-
cation, a single kernel, or, with Cubes multiple selection feature, multiple kernels at
the same time. Figure 15 shows an example of the Advisor plugin for the main com-
putational routine of JURASSIC. Communication efficiency is very good as there is
no MPI in this kernel and load balance is an issue as we have already seen in Fig-
ure 8b and Figure 12b. To present all metrics at once we need to merge at least two
performance reports: A Scalasca trace analysis and a profile containing the PAPI
counters PAPI_TOT_INS, PAPI_TOT_CYC, and PAPI_RES_STL. Without a trace
analysis we have to omit the Serialisation Efficiency and Transfer Efficiency met-
rics.

6 Conclusion and future work

In this paper we gave an overview over the newly introduced CubeGUI plugin in-
frastructure. We described the broad spectrum of plugins and showed how they can

A picture is worth a thousand numbers 21

File Display Plugins Help

synchronize state of ... 3] Restore Setting “ Save Settings Delete Settings POP Assessment Vv
Y |] 9 9

v

Absolute v | B Advisor | @ Source &
i
4
m
l Call tree Flat view POP Assessment : formod 2
~ @ 0.02 main . g
0.19 MPI_Init Parallel Efficiency L
0.00 MPI_Comm_r_ank IIBadibalance ™ g
0.00 MPI_Comm_size e
3 0.06 read ctl Communication Efficiency il
>-@ 0.00 scan_ctl)
i Serialisation Eficienc L
v-® 0.01 call formod g
8.60 read_obs Transfer efficiency L
6.34 read_atm
6.32 read aero Stalled Resources L
>-m 16.20 getiopt prop
= = 1PC Value 1.45 L
I8~ 6.96e3 formodi|
43.78 write_obs Instructions (only computation) value 2.23¢13 W
3.78 MPI_Reduce
1.62 MPI Finalize Computation time Value 527e3 M
Candidates
Callpath Issue
0.00 6961.99 (98.77%) 7048.93
X

Fig. 15: Screenshot of the Advisor plugin showing the POP metrics for the main
computational routine of JURASSIC.

help in everyday performance analysis. The enhancements of the system-tree help
in the analysis of large-scale applications and several plugins increase the efficiency
of the analysis by quickly pinpointing issues (like the Advisor plugin) or enabling
novel types of analysis (like Jenga Fett). Context-free plugins make the often over-
looked but incredibly useful Cube algebra utilities more accessible to non-expert
analysts.

However, there is still a lot of ongoing and planned future work to do. First, we
want to decouple more features from the core and provide them as plugins to keep
the code as clean as possible. We plan to make plugins more powerful and versatile
by enhancing the API and providing more mechanisms for plugins to communicate
and interact with the CubeGUI. Performance is also an important topic, not only for
applications but for performance analysis tools as well. We want to utilize the intra-
node concurrency of modern CPUs to speed up the calculations within a plugin as
well as the communication between plugins. As part of this, there is a current effort
to make calculations asynchronous and distributed over smaller steps to incresase
interactivity of the CubeGUI for larger experiments.

An ongoing development in Cube is the switch to a client-sever architecture, i.e.
a server is running on the HPC system where the performance results are and a client

22 M. Knobloch et al.

is running on the local machine of the performance analyst to utilize the hardware
of HPC nodes and avoid transfering large amounts of data. The plugin infrastructure
needs to be adapted to the architecture change in the GUI and we need a definition
of modular plugins with a server-side” part and a “’client-side” part of the plugin.

Of course we also strive to expand the list of available plugins — ideally including
third-party developed plugins as well. We are looking at a tighter integration with
other tools, both performance analysis tools (like for example Paraver [17]) and
visualization tools (e.g. Paraview [6]). Performance analysis and tuning is still a
very hard task and we want to ease that burden by providing an as comprehensive
view as possible.

Acknowledgments

Parts of this project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreements No 676553 and
824080.

A picture is worth a thousand numbers 23

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Performance Optimisation and Productivity: A Centre of Excellence in HPC.

https://pop—-coe.eu/. Last access: 2019-09-16.

. POP Standard Metrics for Parallel Performance Analysis.

https://pop—-coe.eu/node/69. Last access: 2019-09-16.

. Scalasca website.

https://www.scalasca.org.

. Score-P website.

https://www.score-p.org.

. TeaLeaf Mini-app.

https://uk-mac.github.io/Tealeaf/.

. James Ahrens, Berk Geveci, and Charles Law. Paraview: An end-user tool for large data

visualization. The visualization handbook, 717, 2005.

. Dirk Brommel, Wolfgang Frings, Brian JN Wylie, Bernd Mohr, Paul Gibbon, and Thomas

Lippert. The high-q club: Experience with extreme-scaling application codes. Supercomputing
Frontiers and Innovations, 5(1):59-78, 2018.

. Dominic Eschweiler, Michael Wagner, Markus Geimer, Andreas Kniipfer, Wolfgang E. Nagel,

and Felix Wolf. Open Trace Format 2 - The next generation of scalable trace formats and
support libraries. In Proc. of the Intl. Conference on Parallel Computing (ParCo), Ghent,
Belgium, August 30 — September 2 2011, volume 22 of Advances in Parallel Computing, pages
481-490. IOS Press, 2012.

. Michael Frigge, David C. Hoaglin, and Boris Iglewicz. Some implementations of the boxplot.

The American Statistician, 43(1):50-54, 1989. .

Markus Geimer, Felix Wolf, Brian J. N. Wylie, Erika Abrahdm, Daniel Becker, and Bernd
Mohr. The SCALASCA performance toolset architecture. In International Workshop on
Scalable Tools for High-End Computing (STHEC), Kos, Greece, pages 51-65, June 2008.
Jerry L. Hintze and Ray D. Nelson. Violin plots: A box plot-density trace synergism. The
American Statistician, 52(2):181-184, 1998.

L Hoffmann and MJ Alexander. Retrieval of stratospheric temperatures from atmospheric
infrared sounder radiance measurements for gravity wave studies. Journal of Geophysical
Research: Atmospheres, 114(D7), 2009.

Andreas Kniipfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias Lieber, Holger
Mickler, Matthias S Miiller, and Wolfgang E Nagel. The vampir performance analysis tool-
set. In Tools for High Performance Computing, pages 139—155. Springer, 2008.

Andreas Kniipfer, Christian Rossel, Dieter an Mey, Scott Biersdorff, Kai Diethelm, Dominic
Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen D. Malony, Wolfgang E.
Nagel, Yury Oleynik, Peter Philippen, Pavel Saviankou, Dirk Schmidl, Sameer S. Shende,
Ronny Tschiiter, Michael Wagner, Bert Wesarg, and Felix Wolf. Score-P — A joint perfor-
mance measurement run-time infrastructure for Periscope, Scalasca, TAU, and Vampir. In
Proc. of the 5th Int’l Workshop on Parallel Tools for High Performance Computing, Septem-
ber 2011, Dresden, pages 79-91. Springer, September 2012.

Allen D. Malony, Srinivasan Ramesh, Kevin Huck, Nicholas Chaimov, and Sameer Shende. A
plugin architecture for the tau performance system. In Proceedings of the 48th International
Conference on Parallel Processing, ICPP 2019, pages 90:1-90:11, New York, NY, USA, 2019.
ACM.

Dirk BR OMMEL, Wolfgang Frings, and Brian JN Wylie. Extreme-scaling applications 24/7
on juqueen blue gene/q. 2015.

Vincent Pillet, Jests Labarta, Toni Cortes, and Sergi Girona. Paraver: A tool to visualize and
analyze parallel code. In Proceedings of WoTUG-18: transputer and occam developments,
volume 44, pages 17-31, 1995.

Pavel Saviankou, Michael Knobloch, Anke Visser, and Bernd Mohr. Cube v4: From per-
formance report explorer to performance analysis tool. In Proceedings of the International
Conference on Computational Science, ICCS 2015, Computational Science at the Gates of
Nature, Reykjavik, Iceland, 1-3 June, 2015, pages 1343-1352, 2015.

24

19.

20.

21.

22.

M. Knobloch et al.

Sameer S Shende and Allen D Malony. The tau parallel performance system. The Interna-
tional Journal of High Performance Computing Applications, 20(2):287-311, 2006.

John Stasko and Eugene Zhang. Focus+ context display and navigation techniques for en-
hancing radial, space-filling hierarchy visualizations. In IEEE Symposium on Information
Visualization 2000. INFOVIS 2000. Proceedings, pages 57-65. IEEE, 2000.

Michael Stephan and Jutta Docter. Juqueen: Ibm blue gene/q® supercomputer system at the
jiilich supercomputing centre. Journal of large-scale research facilities JLSRF, 1:1, 2015.
Godehard Sutmann, Lidia Westphal, and Matthias Bolten. Particle based simulations of com-
plex systems with mp2c: hydrodynamics and electrostatics. In ICNAAM 2010: International
Conference of Numerical Analysis and Applied Mathematics 2010, volume 1281, pages 1768—
1772. AIP Publishing, 2010.

