000893078 001__ 893078
000893078 005__ 20220930130319.0
000893078 0247_ $$2doi$$a10.1039/D1GC00852H
000893078 0247_ $$2ISSN$$a1463-9262
000893078 0247_ $$2ISSN$$a1463-9270
000893078 0247_ $$2Handle$$a2128/28173
000893078 0247_ $$2WOS$$aWOS:000664600800001
000893078 037__ $$aFZJ-2021-02546
000893078 082__ $$a540
000893078 1001_ $$0P:(DE-Juel1)171705$$aMack, Kevin$$b0$$ufzj
000893078 245__ $$aExtractive in-situ product removal for the application of naturally produced L-alanine as amine donor in enzymatic metaraminol production
000893078 260__ $$aCambridge$$bRSC$$c2021
000893078 3367_ $$2DRIVER$$aarticle
000893078 3367_ $$2DataCite$$aOutput Types/Journal article
000893078 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1630412690_10532
000893078 3367_ $$2BibTeX$$aARTICLE
000893078 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893078 3367_ $$00$$2EndNote$$aJournal Article
000893078 520__ $$aVicinal amino alcohols such as metaraminol find direct application in pharmaceuticals and serve as building blocks for fine chemicals. The amine transaminase enzyme can facilitate the stereoselective production of such amino alcohols, which have two chiral centers, e.g. by transamination from 2-hydroxy ketones in the presence of an amine donor. The feasibility of enzymatic metaraminol production has already been demonstrated with the amine donor isopropylamine. This amine donor has the drawback of an unfavorable reaction equilibrium for the target reaction and being crude oil-based. Therefore, we substituted isopropylamine with the bio-based amine donor L-alanine. As the transamination reaction is also thermodynamically limited when utilizing L-alanine, in situ liquid–liquid extraction of metaraminol can solve this drawback and was implemented to increase the conversions and initiate downstream processing steps. We investigated a suitable solvent–enzyme combination and determined a distinct operational window in terms of reaction conditions for combining the enzymatic metaraminol production with product extraction in a smart process concept. This study thus presents a powerful example for the use of the bio-based amine donor L-alanine in combination with efficient process intensification of biocatalytic drug synthesis by means of in situ product removal.
000893078 536__ $$0G:(DE-HGF)POF4-2172$$a2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000893078 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893078 7001_ $$0P:(DE-Juel1)180324$$aDoeker, Moritz$$b1$$ufzj
000893078 7001_ $$0P:(DE-Juel1)178078$$aGrabowski, Laura$$b2$$ufzj
000893078 7001_ $$0P:(DE-HGF)0$$aJupke, Andreas$$b3
000893078 7001_ $$0P:(DE-Juel1)144643$$aRother, Dörte$$b4$$eCorresponding author$$ufzj
000893078 773__ $$0PERI:(DE-600)2006274-6$$a10.1039/D1GC00852H$$gp. 10.1039.D1GC00852H$$n13$$p4892-4901$$tGreen chemistry$$v23$$x1463-9270$$y2021
000893078 8564_ $$uhttps://juser.fz-juelich.de/record/893078/files/d1gc00852h.pdf$$yOpenAccess
000893078 8767_ $$d2021-12-30$$eHybrid-OA$$jPublish and Read
000893078 909CO $$ooai:juser.fz-juelich.de:893078$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire$$pdnbdelivery
000893078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171705$$aForschungszentrum Jülich$$b0$$kFZJ
000893078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180324$$aForschungszentrum Jülich$$b1$$kFZJ
000893078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178078$$aForschungszentrum Jülich$$b2$$kFZJ
000893078 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144643$$aForschungszentrum Jülich$$b4$$kFZJ
000893078 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2172$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000893078 9130_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000893078 9141_ $$y2021
000893078 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000893078 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000893078 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000893078 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-03
000893078 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893078 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2021-02-03
000893078 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bGREEN CHEM : 2019$$d2021-02-03
000893078 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000893078 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000893078 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2021-02-03$$wger
000893078 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-03
000893078 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000893078 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-02-03$$wger
000893078 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGREEN CHEM : 2019$$d2021-02-03
000893078 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000893078 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-03$$wger
000893078 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000893078 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000893078 9801_ $$aFullTexts
000893078 980__ $$ajournal
000893078 980__ $$aVDB
000893078 980__ $$aI:(DE-Juel1)IBG-1-20101118
000893078 980__ $$aUNRESTRICTED
000893078 980__ $$aAPC