001     893078
005     20220930130319.0
024 7 _ |a 10.1039/D1GC00852H
|2 doi
024 7 _ |a 1463-9262
|2 ISSN
024 7 _ |a 1463-9270
|2 ISSN
024 7 _ |a 2128/28173
|2 Handle
024 7 _ |a WOS:000664600800001
|2 WOS
037 _ _ |a FZJ-2021-02546
082 _ _ |a 540
100 1 _ |a Mack, Kevin
|0 P:(DE-Juel1)171705
|b 0
|u fzj
245 _ _ |a Extractive in-situ product removal for the application of naturally produced L-alanine as amine donor in enzymatic metaraminol production
260 _ _ |a Cambridge
|c 2021
|b RSC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1630412690_10532
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Vicinal amino alcohols such as metaraminol find direct application in pharmaceuticals and serve as building blocks for fine chemicals. The amine transaminase enzyme can facilitate the stereoselective production of such amino alcohols, which have two chiral centers, e.g. by transamination from 2-hydroxy ketones in the presence of an amine donor. The feasibility of enzymatic metaraminol production has already been demonstrated with the amine donor isopropylamine. This amine donor has the drawback of an unfavorable reaction equilibrium for the target reaction and being crude oil-based. Therefore, we substituted isopropylamine with the bio-based amine donor L-alanine. As the transamination reaction is also thermodynamically limited when utilizing L-alanine, in situ liquid–liquid extraction of metaraminol can solve this drawback and was implemented to increase the conversions and initiate downstream processing steps. We investigated a suitable solvent–enzyme combination and determined a distinct operational window in terms of reaction conditions for combining the enzymatic metaraminol production with product extraction in a smart process concept. This study thus presents a powerful example for the use of the bio-based amine donor L-alanine in combination with efficient process intensification of biocatalytic drug synthesis by means of in situ product removal.
536 _ _ |a 2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)
|0 G:(DE-HGF)POF4-2172
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Doeker, Moritz
|0 P:(DE-Juel1)180324
|b 1
|u fzj
700 1 _ |a Grabowski, Laura
|0 P:(DE-Juel1)178078
|b 2
|u fzj
700 1 _ |a Jupke, Andreas
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Rother, Dörte
|0 P:(DE-Juel1)144643
|b 4
|e Corresponding author
|u fzj
773 _ _ |a 10.1039/D1GC00852H
|g p. 10.1039.D1GC00852H
|0 PERI:(DE-600)2006274-6
|n 13
|p 4892-4901
|t Green chemistry
|v 23
|y 2021
|x 1463-9270
856 4 _ |u https://juser.fz-juelich.de/record/893078/files/d1gc00852h.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:893078
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171705
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180324
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)178078
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)144643
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2172
|x 0
913 0 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2021
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2021-02-03
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b GREEN CHEM : 2019
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-03
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-03
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GREEN CHEM : 2019
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-03
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21