000893095 001__ 893095 000893095 005__ 20240712084456.0 000893095 0247_ $$2doi$$a10.1039/D0MA00902D 000893095 0247_ $$2Handle$$a2128/27919 000893095 0247_ $$2altmetric$$aaltmetric:104794960 000893095 0247_ $$2WOS$$aWOS:000644707600001 000893095 037__ $$aFZJ-2021-02554 000893095 082__ $$a540 000893095 1001_ $$0P:(DE-Juel1)173662$$aDas, Basita$$b0$$eCorresponding author 000893095 245__ $$aDefect tolerant device geometries for lead-halide perovskites 000893095 260__ $$aCambridge$$bRoyal Society of Chemistry$$c2021 000893095 3367_ $$2DRIVER$$aarticle 000893095 3367_ $$2DataCite$$aOutput Types/Journal article 000893095 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1715085139_818 000893095 3367_ $$2BibTeX$$aARTICLE 000893095 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000893095 3367_ $$00$$2EndNote$$aJournal Article 000893095 520__ $$aThe term “defect tolerance” is widely used in the literature to describe materials such as lead-halides perovskites, where solution-processed polycrystalline thin films exhibit long non-radiative lifetimes of microseconds or longer. Studies on defect tolerance of materials mostly look at the properties of the host material and/or the chemical nature of defects that affect their capture coefficients. However, the recombination activity of a defect is not only a function of its capture coefficients but also depends on the electrostatics and the design of the layer stack of a photovoltaic device. Here we study the influence of device geometry on defect tolerance by combining calculations of capture coefficients with device simulations. We derive generic device design principles which can inhibit recombination inside a photovoltaic device for a given set of capture coefficients based on the idea of slowing down the slower of the two processes (electron and hole capture) even further by modifying electron and hole injection into the absorber layer. We use the material parameters and typical p–i–n device geometry representing methylammonium lead halide perovskites solar cells to illustrate the application of our generic design principles to improve specific devices. 000893095 536__ $$0G:(DE-HGF)POF4-121$$a121 - Photovoltaik und Windenergie (POF4-121)$$cPOF4-121$$fPOF IV$$x0 000893095 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000893095 7001_ $$0P:(DE-Juel1)169264$$aLiu, Zhifa$$b1 000893095 7001_ $$0P:(DE-Juel1)145750$$aAguilera, Irene$$b2 000893095 7001_ $$0P:(DE-Juel1)143905$$aRau, Uwe$$b3$$ufzj 000893095 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b4 000893095 773__ $$0PERI:(DE-600)3031236-X$$a10.1039/D0MA00902D$$gp. 10.1039.D0MA00902D$$n11$$p3655$$tMaterials advances$$v2$$x2633-5409$$y2021 000893095 8564_ $$uhttps://juser.fz-juelich.de/record/893095/files/das21materadv.pdf$$yOpenAccess 000893095 909CO $$ooai:juser.fz-juelich.de:893095$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000893095 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173662$$aForschungszentrum Jülich$$b0$$kFZJ 000893095 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169264$$aForschungszentrum Jülich$$b1$$kFZJ 000893095 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145750$$aForschungszentrum Jülich$$b2$$kFZJ 000893095 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143905$$aForschungszentrum Jülich$$b3$$kFZJ 000893095 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b4$$kFZJ 000893095 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0 000893095 9130_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0 000893095 9141_ $$y2021 000893095 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0 000893095 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000893095 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMATER ADV : 2022$$d2024-02-05 000893095 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-02-05 000893095 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-02-05 000893095 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-08-01T15:05:08Z 000893095 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-08-01T15:05:08Z 000893095 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-08-01T15:05:08Z 000893095 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-02-05 000893095 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-02-05 000893095 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-02-05 000893095 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMATER ADV : 2022$$d2024-02-05 000893095 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-02-05 000893095 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-02-05 000893095 920__ $$lyes 000893095 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0 000893095 9801_ $$aFullTexts 000893095 980__ $$ajournal 000893095 980__ $$aVDB 000893095 980__ $$aI:(DE-Juel1)IEK-5-20101013 000893095 980__ $$aUNRESTRICTED 000893095 981__ $$aI:(DE-Juel1)IMD-3-20101013