TY  - JOUR
AU  - Das, Basita
AU  - Liu, Zhifa
AU  - Aguilera, Irene
AU  - Rau, Uwe
AU  - Kirchartz, Thomas
TI  - Defect tolerant device geometries for lead-halide perovskites
JO  - Materials advances
VL  - 2
IS  - 11
SN  - 2633-5409
CY  - Cambridge
PB  - Royal Society of Chemistry
M1  - FZJ-2021-02554
SP  - 3655
PY  - 2021
AB  - The term “defect tolerance” is widely used in the literature to describe materials such as lead-halides perovskites, where solution-processed polycrystalline thin films exhibit long non-radiative lifetimes of microseconds or longer. Studies on defect tolerance of materials mostly look at the properties of the host material and/or the chemical nature of defects that affect their capture coefficients. However, the recombination activity of a defect is not only a function of its capture coefficients but also depends on the electrostatics and the design of the layer stack of a photovoltaic device. Here we study the influence of device geometry on defect tolerance by combining calculations of capture coefficients with device simulations. We derive generic device design principles which can inhibit recombination inside a photovoltaic device for a given set of capture coefficients based on the idea of slowing down the slower of the two processes (electron and hole capture) even further by modifying electron and hole injection into the absorber layer. We use the material parameters and typical p–i–n device geometry representing methylammonium lead halide perovskites solar cells to illustrate the application of our generic design principles to improve specific devices.
LB  - PUB:(DE-HGF)16
UR  - <Go to ISI:>//WOS:000644707600001
DO  - DOI:10.1039/D0MA00902D
UR  - https://juser.fz-juelich.de/record/893095
ER  -