Hauptseite > Publikationsdatenbank > Defect tolerant device geometries for lead-halide perovskites > print |
001 | 893095 | ||
005 | 20240712084456.0 | ||
024 | 7 | _ | |a 10.1039/D0MA00902D |2 doi |
024 | 7 | _ | |a 2128/27919 |2 Handle |
024 | 7 | _ | |a altmetric:104794960 |2 altmetric |
024 | 7 | _ | |a WOS:000644707600001 |2 WOS |
037 | _ | _ | |a FZJ-2021-02554 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Das, Basita |0 P:(DE-Juel1)173662 |b 0 |e Corresponding author |
245 | _ | _ | |a Defect tolerant device geometries for lead-halide perovskites |
260 | _ | _ | |a Cambridge |c 2021 |b Royal Society of Chemistry |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1715085139_818 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The term “defect tolerance” is widely used in the literature to describe materials such as lead-halides perovskites, where solution-processed polycrystalline thin films exhibit long non-radiative lifetimes of microseconds or longer. Studies on defect tolerance of materials mostly look at the properties of the host material and/or the chemical nature of defects that affect their capture coefficients. However, the recombination activity of a defect is not only a function of its capture coefficients but also depends on the electrostatics and the design of the layer stack of a photovoltaic device. Here we study the influence of device geometry on defect tolerance by combining calculations of capture coefficients with device simulations. We derive generic device design principles which can inhibit recombination inside a photovoltaic device for a given set of capture coefficients based on the idea of slowing down the slower of the two processes (electron and hole capture) even further by modifying electron and hole injection into the absorber layer. We use the material parameters and typical p–i–n device geometry representing methylammonium lead halide perovskites solar cells to illustrate the application of our generic design principles to improve specific devices. |
536 | _ | _ | |a 121 - Photovoltaik und Windenergie (POF4-121) |0 G:(DE-HGF)POF4-121 |c POF4-121 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Liu, Zhifa |0 P:(DE-Juel1)169264 |b 1 |
700 | 1 | _ | |a Aguilera, Irene |0 P:(DE-Juel1)145750 |b 2 |
700 | 1 | _ | |a Rau, Uwe |0 P:(DE-Juel1)143905 |b 3 |u fzj |
700 | 1 | _ | |a Kirchartz, Thomas |0 P:(DE-Juel1)159457 |b 4 |
773 | _ | _ | |a 10.1039/D0MA00902D |g p. 10.1039.D0MA00902D |0 PERI:(DE-600)3031236-X |n 11 |p 3655 |t Materials advances |v 2 |y 2021 |x 2633-5409 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/893095/files/das21materadv.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:893095 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)173662 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)169264 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)145750 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)143905 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)159457 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-121 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Photovoltaik und Windenergie |x 0 |
913 | 0 | _ | |a DE-HGF |b Energie |l Erneuerbare Energien |1 G:(DE-HGF)POF3-120 |0 G:(DE-HGF)POF3-121 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Solar cells of the next generation |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a Creative Commons Attribution CC BY 3.0 |0 LIC:(DE-HGF)CCBY3 |2 HGFVOC |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MATER ADV : 2022 |d 2024-02-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-02-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-02-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-08-01T15:05:08Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-08-01T15:05:08Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-08-01T15:05:08Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-02-05 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0112 |2 StatID |b Emerging Sources Citation Index |d 2024-02-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-02-05 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b MATER ADV : 2022 |d 2024-02-05 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-02-05 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-02-05 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-5-20101013 |k IEK-5 |l Photovoltaik |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-5-20101013 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IMD-3-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|