001     893095
005     20240712084456.0
024 7 _ |a 10.1039/D0MA00902D
|2 doi
024 7 _ |a 2128/27919
|2 Handle
024 7 _ |a altmetric:104794960
|2 altmetric
024 7 _ |a WOS:000644707600001
|2 WOS
037 _ _ |a FZJ-2021-02554
082 _ _ |a 540
100 1 _ |a Das, Basita
|0 P:(DE-Juel1)173662
|b 0
|e Corresponding author
245 _ _ |a Defect tolerant device geometries for lead-halide perovskites
260 _ _ |a Cambridge
|c 2021
|b Royal Society of Chemistry
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1715085139_818
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The term “defect tolerance” is widely used in the literature to describe materials such as lead-halides perovskites, where solution-processed polycrystalline thin films exhibit long non-radiative lifetimes of microseconds or longer. Studies on defect tolerance of materials mostly look at the properties of the host material and/or the chemical nature of defects that affect their capture coefficients. However, the recombination activity of a defect is not only a function of its capture coefficients but also depends on the electrostatics and the design of the layer stack of a photovoltaic device. Here we study the influence of device geometry on defect tolerance by combining calculations of capture coefficients with device simulations. We derive generic device design principles which can inhibit recombination inside a photovoltaic device for a given set of capture coefficients based on the idea of slowing down the slower of the two processes (electron and hole capture) even further by modifying electron and hole injection into the absorber layer. We use the material parameters and typical p–i–n device geometry representing methylammonium lead halide perovskites solar cells to illustrate the application of our generic design principles to improve specific devices.
536 _ _ |a 121 - Photovoltaik und Windenergie (POF4-121)
|0 G:(DE-HGF)POF4-121
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Liu, Zhifa
|0 P:(DE-Juel1)169264
|b 1
700 1 _ |a Aguilera, Irene
|0 P:(DE-Juel1)145750
|b 2
700 1 _ |a Rau, Uwe
|0 P:(DE-Juel1)143905
|b 3
|u fzj
700 1 _ |a Kirchartz, Thomas
|0 P:(DE-Juel1)159457
|b 4
773 _ _ |a 10.1039/D0MA00902D
|g p. 10.1039.D0MA00902D
|0 PERI:(DE-600)3031236-X
|n 11
|p 3655
|t Materials advances
|v 2
|y 2021
|x 2633-5409
856 4 _ |u https://juser.fz-juelich.de/record/893095/files/das21materadv.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:893095
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)173662
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)169264
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145750
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)143905
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)159457
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|x 0
913 0 _ |a DE-HGF
|b Energie
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Solar cells of the next generation
|x 0
914 1 _ |y 2021
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MATER ADV : 2022
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-08-01T15:05:08Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-08-01T15:05:08Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-08-01T15:05:08Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-02-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-02-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-02-05
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MATER ADV : 2022
|d 2024-02-05
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-02-05
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-02-05
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21