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ABSTRACT: Background: Motor response to
dopaminergic therapy is a characteristic of patients
with  Parkinson’s disease (PD). Whether non-
dopaminergic neurotransmitters contribute to treat-
ment response is uncertain.

Objectives: The aim of this study is to determine
whether putaminal y-aminobutyric acid (GABA) levels
are associated with dopaminergic motor response.
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Methods: We assessed putaminal GABA levels in
19 PD patients and 13 healthy controls (HCs) utilizing
ultra-high field proton magnetic resonance spectros-
copy. Motor performance was evaluated using the
Movement Disorder Society —Unified Parkinson’s Dis-
ease Rating Scale, Part lll, in the ON and OFF states.
Statistical analysis comprised group comparisons,
correlation analysis, and multiple linear regression.
Results: In PD, GABA levels were significantly higher
compared to HCs (1.50+0.26mM vs. 1.26 +
0.31 mM, P =0.022). Furthermore, GABA levels were
independent predictors of absolute and relative dopa-
minergic treatment response.

Conclusions: Our findings indicate that elevated
putaminal GABA levels are associated with worse
dopaminergic response in PD, emphasizing the essen-
tial role of nondopaminergic neurotransmitters in motor
response. © 2021 The Authors. Movement Disorders
published by Wiley Periodicals LLC on behalf of Inter-
national Parkinson and Movement Disorder Society

Key Words: Parkinson’s disease; magnetic reso-
nance imaging; spectroscopy; y-aminobutyric acid;
neuroimaging

- /

Motor symptoms in Parkinson’s disease (PD)
typically show a considerable response to dopaminergic
treatment. Therefore, dopaminergic responsiveness has
been included as a key feature in the current diagnostic
criteria for PD." However, the magnitude of dopami-
nergic response varies among PD patients, and individ-
uals showing a limited response to dopaminergic
treatment may be difficult to distinguish from those
with atypical parkinsonism or essential tremor.*>

Studies on PD patients’ dopaminergic treatment
response are surprisingly sparse and mainly focused on
immutable factors, for example, disease progression
and age. Results are heterogeneous, with studies
reporting no relation to disease progression* and others
reporting adverse effects of age>® and disease progres-
sion”® on treatment response.

Even though dopamine is the pivotal neurotransmit-
ter facilitating motor execution in the basal ganglia cir-
cuitry, other neurotransmitters are involved as well.”
Indeed, alterations in nondopaminergic brain metabo-
lites are well described in PD.'® Notably, several animal
and human studies have shown that in PD the concen-
tration of y-aminobutyric acid (GABA) is significantly
elevated in selected brain areas.'"'> As GABA mainly
acts as an inhibitory neurotransmitter, its enrichment
might counteract dopaminergic signaling.'?

To investigate the influence of GABA on motor func-
tion, we measured GABA levels in the putamen of PD
patients using proton magnetic resonance spectroscopy

("H-MRS) at ultra-high field and examined the
GABAergic impact on dopaminergic treatment response.

Patients and Methods

Participants and Clinical Assessments

We recruited 22 PD patients and 13 healthy controls
(HGC:s) for this case—control study. The inclusion criteria
were as follows: age 50-80 years, Geriatric Depression
Scale (GDS-15) <5, and Montreal Cognitive Assess-
ment (MoCA) > 22. PD patients had to fulfil the Move-
ment Disorder Society (MDS) clinical diagnostic criteria
for PD (20 patients met the clinically established and
2 met probable criteria).! Exclusion criteria included
contraindications for magnetic resonance imaging
(MRI) and structural brain lesions and, for HCs, any
symptom suggesting a movement disorder. No subject
was on any medication that may affect the GABAergic
system (ie, benzodiazepines, z-medications, and baclo-
fen). Assessments included demographics and Sniffin’
Sticks and, in PD patients, disease duration, the
levodopa-equivalent daily dose (LEDD),'"* and
Hoehn & Yahr stage. All but one patient were on
dopaminergic medication; 1 patient was treatment-
naive. PD subtypes were classified according to Stebbins
et al. (2013)."> We classified the clinically more affected
body side by the side of symptom onset and by calculat-
ing the difference in the right- minus left-sided MDS-
Unified Parkinson’s Disease Rating Scale, Part III
(MDS-UPDRS, Part III) items.'® PD symptoms were
considered lateralized if (1) the difference between the
right- and left-sided items was >4 points and (2) it mat-
ched the side of onset.'® We evaluated treatment
response with the MDS-UPDRS III in the ON and OFF
states. ON state was defined as subjects’ self-reported
individual best motor functional level during the day
while taking their regular dopaminergic medication.
OFF state was assessed after an overnight medication
withdrawal of at least 14 hours. As discrepancies
between absolute (total MDS-UPDRS III OFF - total
MDS-UPDRS III ON) and relative dopaminergic treat-
ment effects ([1 —total MDS-UPDRS III ON/total
MDS-UPDRS III OFF] x 100) were reported,® we eval-
uated both estimates. The local ethical committee
approved the study, and all participants provided writ-
ten informed consent before inclusion.

MRI

MRI data were acquired using a 7-T Siemens Terra
scanner. All PD subjects were scanned during the stable
ON condition, and no patient reported fluctuations
during scanning. A T1-weighted mp2rage sequence
(TE/TR = 1.99 millisecond/4.5 second; isotropic voxel
size = 0.75 mm®) was used for anatomical imaging and
for positioning the MRS voxel. Before MRS
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acquisition, the radiofrequency power was calibrated
for each subject, and BO shim was performed using
FASTESTMAP. MRS spectra of a voxel centered in
the left putamen (voxel size: 14 [left-right] x 32 [ante-
rior—posterior] X 17 [rostral-caudal] mm?®) were mea-
sured using a single-voxel-stimulated echo acquisition
mode, with the following parameters: TE = 4 ms,
TR = 8000 ms, TM = 28 ms, 72 averages, received
bandwidth = 6000 Hz, and vector size = 2048. One
extra complete phase cycle was measured without
water suppression for eddy-current correction and
absolute quantification. All data were preprocessed uti-
lizing the FID-A package'” in Matlab 2015a and quan-
tification using LCModel (6.3-0I). The details are
provided in the Supporting Information. A given spec-
trum was discarded if the full-width at half-maximum
was >0.08 ppm and if the signal-to-noise ratio was
<18. This led to the exclusion of 3 PD patients.

The anatomic image was segmented, using FAST'®
for cortical gray matter (GM), white matter (WM), and
cerebrospinal fluid (CSF) and FIRST' for subcortical
structures (FMRIB Software Library v6.0.3). The rela-
tive amounts of CSF, GM, and WM within the MRS
voxel were determined. Metabolite concentrations were
corrected for differences in the MRS voxel’s CSF con-
tent by dividing the concentration value obtained with
LCModel by “1-CSF fraction.”

Statistics

Data were analyzed using SPSS version 25 and
described by means and standard deviations. Distribu-
tion was assessed using Shapiro-Wilk tests, Q-Q plots,
and box plots. We compared groups with Student’s
t test, x> test, and Mann-Whitney U tests, as appropri-
ate. Correlations were examined by Pearson’s correla-
tion coefficients. Multivariate analysis was performed
using stepwise multiple linear regression, including
GABA levels, age, LEDD, disease duration, and total
MDS-UPDRS III OFF. Significance was accepted at
P < 0.05 uncorrected.

Results

PD patients and HCs were comparable regarding
age, sex, MoCA scores, and GDS-15 values (Table 1).
The average disease duration was 5.7 + 4.2 years, and
the mean MDS-UPDRS III OFF score was 36.9 + 16.4.
The mean treatment response to dopaminergic therapy
was 26.8 £ 17.5%.

Figure 1 shows a representative voxel placement and
MRS spectra. Groups did not differ in MRS quality
attributes, and no significant differences were found for
GM, WM, and CSF volume fractions (Table 1). The
putamen accounted for approximately 65% of the
voxel’s total GM, and 75% of the putamen was

MODULATES MOTOR RESPONSE
TABLE 1 Demographic data, clinical ~characteristics, and MR

spectroscopy assessment of PD patients and healthy controls

PD
Controls patients
n=13 n=19
Demographic data
Sex (female/male) 4/9 5/14
Age () 68.9+80  64.9+87
Clinical characteristics
GDS-15 0.7+ 0.9 1.1+£12
MoCA 26.6 = 1.9 27.8 £ 1.7

Sniffin’ Sticks, correct 9.7 £ 1.6%** 52 + 2.3
PD characteristics

PD phenotype

TD (n)/PIGD (n)/1 (n) 12/5/2
PD dominant side

R (n)/L (n)/B (n) 10/5/4
Disease duration (y) 5.7+ 42
Hoehn & Yahr 21+0.8
MDS-UPDRS III (OFF) 36.9 + 16.4
MDS-UPDRS III (ON) 255 £ 11.0
Absolute treatment response 10.9 £ 10.0
Relative treatment response 26.8 £17.5

(%0)
Total LEDD (mg/d) 535 + 448

MR spectroscopy

Fraction WM 0.34 £ 0.06  0.36 £ 0.06
Fraction GM 0.66 £ 0.06  0.63 £ 0.07
FWHM (ppm) 0.06 £0.01  0.06 £ 0.01
SNR 32.9+9.0 28.4 £ 6.5
GABA (mM) 1.26 £ 0.31* 1.50 £+ 0.26
CRLB (%) 115+ 25 10.8 £ 2.2

Abbreviations: PD, Parkinson’s disease; GDS-15, Geriatric Depression Scale;
MoCA, Montreal Cognitive Assessment; TD, tremor-dominant phenotype;
PIGD, postural instability/gait difficulty phenotype; I, indeterminate phenotype;
R, right; L, left; B, bilateral; MDS-UPDRS III, Movement Disorder Society—
Unified Parkinson’s Disease Rating Scale, Part III; LEDD, levodopa-equivalent
daily dose; MR, magnetic resonance; WM, white matter; GM, gray matter;
FWHM, full-width at half~maximum; SNR, signal-to-noise ratio; CRLB,
Cramer—Rao lower bounds; y-aminobutyric acid.

*P < 0.05.

***P < 0.001; significant differences are highlighted in bold.

covered by the MRS voxel on average (no difference
between groups; both P > 0.05). GABA concentrations
were  significantly  elevated in PD  patients
(1.50 + 0.26 mM) compared to HCs (1.26 + 0.31 mM;
t(30) = —2.420, P =0.022). Averaged Cramer-Rao
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lower bounds for GABA were 10.8 +2.2% (PD) and
11.5 £ 2.5% (HCs), P = 0.414.

PD patients’ putaminal GABA levels inversely corre-
lated with dopaminergic treatment response (relative
treatment response: r = —0.486, P =0.041, absolute
treatment response: r = —0.578, P = 0.012; Fig. 1C).
No significant correlation was found between GABA
levels and disease duration or LEDD. Multivariate lin-
ear regression revealed GABA levels as independent
predictors of absolute and relative treatment response
when including age, LEDD, disease duration, and total
MDS-UPDRS 1III OFF scores as covariates (relative
treatment response: GABA: p = —0.450, P =0.034,
LEDD: B = 0.458, P = 0.032, R? = 0.445, and absolute
treatment response: GABA: f = —0.412, P =0.008,
LEDD: g = 0.336, P =0.039, MDS-UPDRS 1III OFF:
p=0.451,P=0.011, R? = 0.774).

Discussion

To the best of our knowledge, our study is the first exam-
ining the role of a nondopaminergic neurotransmitter—

specifically GABA—and its association to the dopami-
nergic treatment effect in PD. In this case—control study,
we found that GABA levels were increased in PD
patients assessed with ultra-high field MRS. Notably,
higher GABA levels inversely correlated with dopami-
nergic response and were an independent predictor of
treatment response.

Elevated GABA levels have been reported in various
brain areas of PD patients, including the basal gang-
lia.!"'> Yet the biological meaning remains poorly
understood. A recent study highlighted that elevated
GABA levels within the medial prefrontal cortex were
associated with somatic symptom disorder in subjects
with and without PD.?° GABA alterations might also
contribute to axial symptoms, which typically show
poor response to dopaminergic treatment.”’ On the
contrary, van Nuland and colleagues did not find a sig-
nificant impact of GABA levels on tremor in PD.*?
Instead, they found an inverse correlation of GABA
levels in the motor cortex and disease severity.?* Varia-
tions among studies might be explained by various
objectives but may also arise due to differences in MRS
acquisition and brain regions examined.
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FIG 1. (A) Exemplary placement of an MRS (magnetic resonance spectroscopy) voxel on the left putamen. (B) "H-MRS spectra of a healthy control
(HC) and a Parkinson’s disease (PD) patient. (C) Scatter plots of the relation between putaminal GABA levels and dopaminergic treatment response.

[Color figure can be viewed at wileyonlinelibrary.com]
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It is well known that dopaminergic signaling in the
basal ganglia is not an isolated process but acts in a highly
coordinated interplay with other neurotransmitters.”*®
GABA mediates immediate downstream signaling of
dopaminergic neurons in the basal ganglia’s direct and
indirect pathway (however, with opposing effects
depending on the pathway). Yet GABA also modulates
dopamine release by axonal GABA receptors on dopa-
mine neurons, providing direct inhibition of striatal dopa-
mine release by GABA receptors.”> Dopamine neurons
may even co-release GABA, regulating postsynaptic dopa-
mine effects.** In line with that, Roberts and colleagues
showed that striatal dopamine release was reduced by
tonic GABAergic inhibition even though dopamine stor-
age capacity was not altered."® Therefore, the inverse rela-
tionship of GABA levels and dopaminergic treatment
response observed in our study might reflect reduced
dopaminergic release mediated by GABAergic inhibition,
eventually leading to a reduced dopaminergic treatment
response. However, MRS cannot distinguish between dis-
tinctive compartments, and therefore, we can assess only
the “net effects” of putaminal GABA levels.

Our study has several limitations. Due to the small
sample size, we could not perform subgroup analyses.
Future studies are warranted to further explore the role
of GABA on the dopaminergic treatment response in
different PD subtypes. In addition, we only assessed
MRS of the left putamen and did not integrate laterality
of symptoms in our analyses. We did not assess the
treatment response by a standardized levodopa test.
However, we evaluated the ON state during the
patient’s best dopaminergic state, reflecting a realistic
approximation of the individual treatment response.
Nevertheless, our assessment might have under-
estimated treatment responses and might be prone to
variation due to different treatment regimes. Further-
more, all patients were scanned in the ON condition
achieved with different treatment regimes.

In conclusion, our findings point toward a significant
contribution of nondopaminergic pathways on motor-
related dopaminergic function in PD. Future studies are
warranted to further explore the interplay of non-
dopaminergic neurotransmitter systems on dopaminergic
function. A better understanding of these complex inter-
actions may eventually facilitate individualized pharma-
cological treatment strategies for PD patients exhibiting
poor motor response to dopaminergic therapy. @
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ABSTRACT: Background: The dentatorubro-
thalamic tract (DRTT) remains understudied in idio-
pathic cervical dystonia (CD), despite evidence that
the pathway is relevant in the pathophysiology of the
disorder.

Objective: The aim of this study was to examine the
DRTT in patients with CD using diffusion tensor imag-
ing (DTl)-based tractography.

Methods: Magnetic resonance imaging scans from
67 participants were collected to calculate diffusion
tractography metrics using a binary tractography-
based DRTT template. Fractional anisotropy and diffu-
sivity measures of left and right DRTT were computed
and compared between 32 subjects with CD and
35 age-matched healthy volunteers.

Results: Fractional anisotropy of right DRTT and
mean and axial diffusivity of left DRTT were signifi-
cantly reduced in patients with CD. Similar abnormali-
ties were observed in patients with focal CD and
patients with CD without tremor. DTl metrics did not
correlate with disease duration or severity.
Conclusions: Significant reductions in DTl measures
suggest microstructural abnormalities within the DRTT in
CD, characterized by a tractography pattern consistent
with decreased axonal integrity. © 2021 International
Parkinson and Movement Disorder Society

Key Words: diffusion tractography; cervical dysto-
nia; dentatorubrothalamic tract
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Structural and functional imaging studies support
broad connectivity abnormalities in adult-onset idio-
pathic dystonias, including cervical dystonia (CD),'*
which are network disorders involving basal ganglia,
motor and sensory cortices, thalamic and brainstem
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