000893098 001__ 893098
000893098 005__ 20240712100949.0
000893098 0247_ $$2doi$$a10.5194/amt-14-4239-2021
000893098 0247_ $$2ISSN$$a1867-1381
000893098 0247_ $$2ISSN$$a1867-8548
000893098 0247_ $$2Handle$$a2128/27920
000893098 0247_ $$2altmetric$$aaltmetric:107326996
000893098 0247_ $$2WOS$$aWOS:000661421100001
000893098 037__ $$aFZJ-2021-02557
000893098 082__ $$a550
000893098 1001_ $$0P:(DE-Juel1)173895$$aGlowania, Marvin$$b0
000893098 245__ $$aComparison of formaldehyde measurements by Hantzsch, CRDS and DOAS in the SAPHIR chamber
000893098 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2021
000893098 3367_ $$2DRIVER$$aarticle
000893098 3367_ $$2DataCite$$aOutput Types/Journal article
000893098 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1623226781_10339
000893098 3367_ $$2BibTeX$$aARTICLE
000893098 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893098 3367_ $$00$$2EndNote$$aJournal Article
000893098 520__ $$aThree instruments that use different techniques to measure gaseous formaldehyde (HCHO) concentrations were compared in experiments in the atmospheric simulation chamber SAPHIR at Forschungszentrum Jülich. One instrument (AL4021, Aero-Laser GmbH) detects HCHO using the wet-chemical Hantzsch reaction (for efficient gas-phase stripping), chemical conversion and fluorescence measurement. An internal HCHO permeation source allows for daily calibrations. This instrument was characterized by sulfuric acid titration (overall accuracy 8.6 %) and yields measurements with a time resolution of 90 s and a limit of detection (3σ) of 0.3 ppbv. In addition, a new commercial instrument that makes use of cavity ring-down spectroscopy (CRDS) determined the concentrations of HCHO, water vapour, and methane (G2307, Picarro, Inc.). Its limit of detection (3σ) is specified as 0.3 ppbv for an integration time of 300 s, and its accuracy is limited by the drift of the zero signal (manufacturer specification 1.5 ppbv). A custom-built high-resolution laser differential optical absorption spectroscopy (DOAS) instrument provided HCHO measurements with a limit of detection (3σ) of 0.9 ppbv and an accuracy of 7 % using an optical multiple reflection cell. The measurements were conducted from June to December 2019 in experiments in which either ambient air flowed through the chamber or the photochemical degradation of organic compounds in synthetic air was investigated. Measured HCHO concentrations were up to 8 ppbv. Various mixtures of organic compounds, water vapour, nitrogen oxides and ozone were present in these experiments. Results demonstrate the need to correct the baseline in measurements performed by the Hantzsch instrument to compensate for drifting background signals. Corrections were equivalent to HCHO mixing ratios in the range of 0.5–1.5 ppbv. The baseline of the CRDS instrument showed a linear dependence on the water vapour mixing ratio with a slope of (−11.20±1.60) ppbv %−1 below and (−0.72±0.08) ppbv %−1 above a water vapour mixing ratio of 0.2 %. In addition, the intercepts of these linear relationships drifted within the specification of the instrument (1.5 ppbv) over time but appeared to be equal for all water mixing ratios. Regular zero measurements are needed to account for the changes in the instrument zero. After correcting for the baselines of measurements by the Hantzsch and the CRDS instruments, linear regression analysis of measurements from all three instruments in experiments with ambient air indicated good agreement, with slopes of between 0.98 and 1.08 and negligible intercepts (linear correlation coefficients R2>0.96). The new small CRDS instrument measures HCHO with good precision and is accurate if the instrument zero is taken into account. Therefore, it can provide measurements with similar accuracy to the DOAS instrument but with slightly reduced precision compared to the Hantzsch instrument.
000893098 536__ $$0G:(DE-HGF)POF4-211$$a211 - Die Atmosphäre im globalen Wandel (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000893098 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893098 7001_ $$0P:(DE-Juel1)16347$$aRohrer, Franz$$b1$$ufzj
000893098 7001_ $$0P:(DE-Juel1)16317$$aDorn, Hans-Peter$$b2
000893098 7001_ $$0P:(DE-Juel1)16326$$aHofzumahaus, Andreas$$b3
000893098 7001_ $$0P:(DE-Juel1)16342$$aHolland, Frank$$b4$$ufzj
000893098 7001_ $$0P:(DE-Juel1)4528$$aKiendler-Scharr, Astrid$$b5
000893098 7001_ $$0P:(DE-Juel1)16324$$aWahner, Andreas$$b6
000893098 7001_ $$0P:(DE-Juel1)7363$$aFuchs, Hendrik$$b7$$eCorresponding author
000893098 773__ $$0PERI:(DE-600)2505596-3$$a10.5194/amt-14-4239-2021$$gVol. 14, no. 6, p. 4239 - 4253$$n6$$p4239 - 4253$$tAtmospheric measurement techniques$$v14$$x1867-8548$$y2021
000893098 8564_ $$uhttps://juser.fz-juelich.de/record/893098/files/amt-14-4239-2021.pdf$$yOpenAccess
000893098 8767_ $$8101453$$92021-06-16$$d2021-08-13$$eAPC$$jZahlung erfolgt$$zBelegnr. 1200170623
000893098 909CO $$ooai:juser.fz-juelich.de:893098$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire
000893098 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16347$$aForschungszentrum Jülich$$b1$$kFZJ
000893098 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16317$$aForschungszentrum Jülich$$b2$$kFZJ
000893098 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16326$$aForschungszentrum Jülich$$b3$$kFZJ
000893098 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16342$$aForschungszentrum Jülich$$b4$$kFZJ
000893098 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4528$$aForschungszentrum Jülich$$b5$$kFZJ
000893098 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich$$b6$$kFZJ
000893098 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7363$$aForschungszentrum Jülich$$b7$$kFZJ
000893098 9130_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000893098 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000893098 9141_ $$y2021
000893098 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-31
000893098 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-31
000893098 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000893098 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-31
000893098 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS MEAS TECH : 2019$$d2021-01-31
000893098 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-31
000893098 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-31
000893098 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-31
000893098 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-31
000893098 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-31
000893098 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-31
000893098 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893098 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-31
000893098 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-31
000893098 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-31
000893098 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-31
000893098 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-31
000893098 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000893098 9801_ $$aFullTexts
000893098 980__ $$ajournal
000893098 980__ $$aVDB
000893098 980__ $$aUNRESTRICTED
000893098 980__ $$aI:(DE-Juel1)IEK-8-20101013
000893098 980__ $$aAPC
000893098 981__ $$aI:(DE-Juel1)ICE-3-20101013