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Abstract

The betatron tune and its dependence on the momentum (chromaticity) are essential
quantities of circular particle accelerators. The tune must be monitored in order to
avoid optical resonances which cause instabilities and limit the lifetime of the stored
particle beam. Control of the tune and chromaticity are also required to achieve long
coherence times in spin polarization experiments as carried out by the JEDI collabo-
ration.

In the scope of the present thesis, a fast betatron tune and chromaticity measurement
system is developed for the Cooler Synchrotron COSY. The betatron oscillations of
the beam are excited through stripline electrodes with a white noise RF signal in an
appropriate frequency band. Resonant transverse oscillations are then observed using
capacitive beam position monitors. Characteristic for the newly developed system is
the determination of the betatron tune from bunch-by-bunch beam position measure-
ments. This allows for time-discrete tune measurements within a few milliseconds as
well as continuous tune monitoring – for example during the acceleration ramp.
The high precision tune measurement also enables determination of the beam chro-
maticity. Therefore, the beam momentum is varied by means of RF frequency sweeps
and the subsequent tune change is measured. For routine use during beam operation
and experiments, the developed method is integrated into the control system.
Finally, measurements showing the operational capabilities and limits of the method
are presented. The influence of different parameters on the signal strength is analysed.
For commissioning, control of the betatron tune and compensation of the chromaticity
are demonstrated.





Kurzfassung

Der Betatron-Tune und seine Abhängigkeit vom Impuls (Chromatizität) sind zwei we-
sentliche Größen von Ring-Beschleunigern. Der Tune muss konstant überwacht wer-
den, um optische Resonanzen zu vermeiden, welche Instabilitäten verursachen und die
Lebensdauer des gespeicherten Teilchenstrahls begrenzen. Die korrekte Einstellung
des Tunes und der Chromatizität ist außerdem essenziell, um lange Kohärenzzeiten
in Spinpolarisations-Experimenten zu erreichen, wie sie von der JEDI-Kollaboration
durchgeführt werden.

Im Rahmen der vorliegenden Arbeit wird ein schnelles Betatron-Tune- und Chro-
matizitätsmesssystem für das Kühler-Synchrotron COSY entwickelt. Dabei werden
Betatronschwingungen des Strahls über Stripline-Elektroden mit einem HF-Signal
weißen Rauschens in einem geeigneten Frequenzband angeregt. Die resonanten Trans-
versalschwingungen werden mit kapazitiven Strahlpositionsmonitoren erfasst. Cha-
rakteristisch für das neu entwickelte System ist die Bestimmung des Betatron-Tunes
aus den bunch-by-bunch Strahlpositionsmessungen. Damit ist eine zeitdiskrete Tune-
Messung innerhalb weniger Millisekunden ebenso möglich wie eine kontinuierliche
Überwachung des Tunes – beispielsweise während der Beschleunigungs-Rampe.
Die hochpräzise Tune-Messung ermöglicht außerdem die Bestimmung der Strahlchro-
matizität. Dazu wird der Strahlimpuls mittels der HF-Frequenz variiert und die damit
einhergehende Tune-Änderung gemessen. Für den routinemäßigen Einsatz im Strahl-
betrieb und bei Experimenten wird das neu entwickelte Verfahren in das Kontrollsys-
tem integriert.
Abschließend werden Messungen vorgestellt, die die Einsatzmöglichkeiten und Gren-
zen der Methode zeigen. Der Einfluss verschiedener Parameter auf die Signalstärke
wird analysiert und im Rahmen der Inbetriebnahme werden Steuerung des Betatron-
Tunes und Kompensation der Chromatizität demonstriert.
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1. Introduction

1.1. The Cooler Synchrotron COSY

The Nuclear Physics Institute (IKP) at Forschungszentrum Jülich [ Ikp ] operates the
accelerator complex depicted in figure  1.1 . Polarized or unpolarized particle beams
are produced in an ion source and accelerated to an energy of 45 MeV in the Jülich
Light Ion Cyclotron (JULIC). Besides being used for isotope production and studies
at the low energy irradiation place, the ion beam can be injected into the Cooler Syn-
chrotron (COSY). COSY is a storage ring with a circumference of 183.47 m, capable
of accelerating proton and deuteron beams in the momentum range from 300 MeV/c
up to 3.7 GeV/c [ Die04 ;  Cos ]. Two electron cooling devices for the low and high en-
ergy range as well as a stochastic cooling system ensure excellent beam quality and
long beam lifetimes. The beam can be stored and used for internal experiments, or
it can be extracted to three external experimental areas.

2 MeV
E-Cooler100 keV

E-Cooler

StochasticCooling

BCT

IPM

BPM

BB Cavity

Phase-probe

Cavity

Septum

Sextupole
Quadrupole
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Cyclotron

0 m10 20

Cooler Synchrotron COSY
Nuclear Physics Institute (IKP)

Forschungszentrum Jülich

Figure 1.1.: Accelerator complex at the Nuclear Physics Institute (IKP)
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1. Introduction

The research and development at IKP focuses on three main activities [ Geb20 , p. 17]:

• Searches for an electric dipole moment (EDM) [ Abu19 ].
• Construction of the High Energy Storage Ring (HESR) [ Leh05 ], a proton and

heavy ion accelerator being build for the future Facility for Antiproton and Ion
Research (FAIR) at the GSI Helmholtz Centre for Heavy Ion Research (GSI).

• Activities towards the High Brilliance Neutron Source (HBS) [ Brü20 ], a neutron
research centre planned to provide neutron beams from a proton accelerator.

1.2. Searches for an electric dipole moment

The electric dipole moment (EDM) quantifies the separation of a particles charge
along its principal axis. A subatomic particle with a non-zero permanent EDM would
violate the time reversal symmetry (T ). Violation of T is expected from the known
violation of CP (charge and parity symmetry) in weak interactions according to the
CPT -Theorem. However, a T -violating EDM has not been observed so far and only
upper limits for its existence have been measured. [  Gri04 , pp. 134 sq.]
The Standard Model of particle physics (SM) predicts EDMs smaller than 10−31 e cm,
which is orders of magnitude below the measured limits. Several theories have been
proposed that predict higher values for the EDM near the current limits. A success-
ful EDM measurement would therefore provide a test for physics beyond the SM.
This would shine a light on challenging questions in modern physics: The matter–
antimatter asymmetry of the universe can not be explained with the currently known
CP violating processes. Furthermore, the observation of an oscillating EDM would
support existing theoretical models for dark-matter candidates. [ Abu19 , pp. 1 sqq.]

The Jülich Electric Dipole moment Investigations (JEDI) collaboration aims to extend
the existing limit on the EDM for protons and accomplish the first measurement for
deuterons. Therefore, precursor experiments and EDM measurements on deuterons
are carried out at COSY. These pave the way for a precision measurement of the
proton EDM with a dedicated future storage ring. [  Abu19 ;  And20 ;  Jed ]
The storage ring is thereby used as a particle trap. Its magnetic and electric 

1
 fields

act on the spin of the trapped particles according to the Thomas-BMT-Equation,
causing the spin axis to precess. A non-vanishing EDM will cause the precession axis
to tilt, producing a vertically oscillating spin component [ Far04  ]. The EDM is then
determined by measuring the vertical polarization built-up of a spin polarized beam.
Since the oscillation is proportional to the very small EDM, a measurement time in
the order of 15 min is required, during which the spin must stay coherent [ Abu19 ,
pp. 40 sqq.]. Therefore, one of the key requirements for such a measurement is to
achieve a sufficiently long spin coherence time (polarization lifetime).

1In the particle rest frame the magnetic guiding fields produce motional electric fields E⃗ = γv⃗ × B⃗
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1.3. Motivation and objective

1.3. Motivation and objective

Beam diagnostic is crucial for operation of an accelerator. The betatron tune (working
point) and its dependence on the momentum (chromaticity) are two central quantities
of interest – not only for the operating crew but also for experiments. They must be
monitored to avoid resonances which cause beam instabilities and limit the lifetime
of the stored particle beam.
For polarized beams additional intrinsic spin tune resonances also limit the polariza-
tion lifetime. To achieve sufficiently long spin coherence times, which are required
for an EDM measurement as described in section  1.2 , control of the tune and chro-
maticity is essential [ Gui18 ]. This requires a precise measurement of these quantities
multiple times per machine cycle.

The existing tune measurement system at COSY (tune sweep system) uses a beam
transfer function measurement [ Bre17 ]. With a measurement time of a few seconds,
such a method is comparably slow by design and not capable of continuous tune
tracking e.g. during the acceleration. A formerly used dynamic measurement sys-
tem [  Die98 ] has already reached the end of its life and can no longer be utilized.
The standard procedure for chromaticity measurements at COSY involves manual
adjustment of the momentum and subsequent tune measurements over several ma-
chine cycles. This makes it a complex and time-consuming task not suited for routine
monitoring and especially not for the systematic chromaticity scans envisaged by the
JEDI collaboration.
Therefore, the need for a fast and automated tune and chromaticity measurement
system arose, that is capable to fulfil the requirements by the operating crew and the
JEDI collaboration.

In 2017 the beam position monitor (BPM) system of COSY was upgraded and new
readout electronics were installed. These can measure the beam position of every
particle bunch passing the BPM with a precision of 100 µm [ Böh18 ;  Kam19 ]. Already
a few milliseconds of the bunch-by-bunch position data is in principle sufficient to
determine the betatron tune.
Exploiting these capabilities, a fast and robust tune measurement system will be
developed. The key requirements on the new system are:

• Measurement of the betatron tune for bunched beams
• Full beam energy range (45 MeV to 2.7 GeV)
• Measurement time below 100 ms
• Accuracy of 10−3 (or better)
• Multiple measurements per machine cycle

In addition, continuous measurements during the acceleration ramp are desired.

3



1. Introduction

Based on the tune measurement an automated chromaticity measurement system will
be developed. The key requirements are:

• Measurement of the total chromaticity taking the effect of sextupole magnets
into account

• At least one, preferably three measurements per machine cycle
• Sensitive to values close to zero chromaticity

The tune and chromaticity measurement systems will be used by the JEDI collabora-
tion in scope of precursor experiments carried out at COSY. Systematic measurements
will be performed to study the dependence of the spin coherence time on the hori-
zontal and vertical chromaticity and tune. Thereby the working point providing the
longest possible spin coherence time can be found.

4



2. Theory of Accelerator Physics

2.1. Transverse linear beam dynamics

In particle accelerators, magnetic fields are used to guide the particle beam. While
dipole fields bend the trajectory onto a closed orbit, quadrupole fields stabilize the
particle motion by the effect of strong focussing [ Hin08 , pp. 180 sqq.]. The main
purpose of sextupole fields is the chromaticity compensation described in section  2.1.5 .
In some facilities like the Large Hadron Collider (LHC) additional higher order fields
are required to counteract field errors and improve beam operation.
The ensemble and configuration of the magnets producing these fields is referred to
as the lattice of an accelerator. It essentially defines the motion and trajectories of
individual particles.

2.1.1. Hill’s differential equations

The particle motion in an accelerator is described by a set of periodic differential
equations often to referred as Hill’s equations [ Wil96 , p. 58]:

x′′(s) + (
1

R(s)2 − k(s))x(s) =
1

R(s)

∆p
p

y′′(s) + k(s)y(s) = 0
(2.1)

These describe the horizontal x(s) and vertical displacement y(s) of a particle per-
pendicular to the reference orbit, as a function of the longitudinal coordinate s along
the orbit. The function R(s) denotes the local radius of curvature due to the dipole
bending fields. These produce a focussing force in the horizontal plane (weak geo-
metric focussing). The quadrupole strength k(s) describes the strong focussing. It is
present in both planes with opposite sign, since a horizontal focussing implies vertical
defocussing and vice versa. Net focussing is achieved by using drifts in between the
quadrupoles (FODO structure [ Hin08 , p. 270]). Both R(s) and k(s) are periodic with
respect to the orbit length L. The parameter ∆p denotes a deviation of the particle’s
momentum from the nominal momentum p. The effect of the resulting horizontal
displacement (dispersion) is described by the inhomogeneous part of the equation.

5



2. Theory of Accelerator Physics

2.1.2. Betatron oscillations

For an ideal particle with ∆p/p = 0 the differential equations  2.1 simplify and a
solution can be given using the Floquet theorem [ Hin08 , pp. 245–249]:

x(s) =
√
εxβx(s) ⋅ cos (Ψx(s) +Φx) ; Ψx(s) =

s

∫
0

1
βx(z)

dz (2.2)

and y(s) analogously. The particles perform transverse oscillations, the so-called be-
tatron oscillations, around the reference orbit. The oscillation amplitude depends on
the longitudinal coordinate s and is described by the betatron function β(s) and the
particle emittance ε. The phase is composed of the phase advance Ψ(s) and the par-
ticles initial phase Φ. While Φ and ε are characteristic to the individual particles and
their initial conditions, the betatron function (and thus the phase advance) depends
only on the optical properties of the accelerator, given by its magnetic lattice. It can
be obtained numerically with standard software for particle accelerator simulation,
for example Methodical Accelerator Design (MAD) [ Mad ].

In transverse phase space, the particle oscillation in x and x′ is described by an
ellipse [ Hin08 , pp. 150, 250]. While the particle travels along the orbit, it follows this
phase space ellipse (figure  2.1 ), which itself continuously changes its shape, since it
depends on the betatron function and therefore on the longitudinal coordinate s. The
ellipse’s area A = πε is proportional to the emittance and stays constant while the
particle propagates (Liouville’s theorem) [ Wil96 , p. 92].

Particle beam

A beam is an ensemble of typically about 108 to 1012 particles performing betatron
oscillations, each with a certain phase and amplitude depending on the initial con-

position x

di
ve

rg
en

ce
 x
′

x = (s)

5

1

2

3

4

Phase space ellipse

Figure 2.1.: Particle oscillation in the horizontal phase space along the phase space
ellipse. The position after each successive turn is indicated by the num-
bered dots for a fractional tune of q = 0.6.
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2.1. Transverse linear beam dynamics

beam path s
2

1

0

1

2
di

sp
la

ce
m

en
t x

   
/  

 m
m

Incoherent betatron oscillations
particle trajectories 2  beam envelope beam centroid

Figure 2.2.: Trajectories of particles performing incoherent betatron oscillations (grey,
one particle is emphasized). The centre of charge (beam centroid) is
shown in blue and the 2σ beam envelope in red.

ditions. Figure  2.2 visualises a beam consisting of many individual particles. Their
betatron oscillations add up incoherently due to the random phase Φ. As a result,
the charge centroid of the beam is steady and does not oscillate. This is an important
fact when one wants to measure the betatron oscillations (see section  3.2 ).
The emittance ε of the particles usually follows a Gaussian distribution, which is
why the beam intensity profile has a Gaussian shape. Its width (beam size) is given
by the position dependent beam envelope E1σ(s) =

√
ε1σβ(s) enclosing 68 % of the

particles [ Wil96 , p. 90]. The parameter ε1σ is the (1 sigma) beam emittance. Various
definitions are used in publications and literature: as an example, figure  2.2 shows
the 2 sigma envelope containing 95 % of all particles.

2.1.3. Betatron tune

The betatron tune is defined as the number of betatron oscillations a particle performs
during a full turn in the accelerator [ Wil96 , p. 115]:

Q =
fq
frev

=
∆Ψ
2π =

1
2π ∮

1
β(s)

ds (2.3)

were fq is the betatron oscillation frequency, frev is the revolution frequency and
∆Ψ = Ψ(L) is the phase advance for a full turn. Often only the fractional part of the
tune q = Q − ⌊Q⌋ is stated.
The particle positions shown in figure  2.1 correspond to a fractional tune of q = 0.6,
for example Q = 3.6. In this example the particle performs 3.6 transverse oscillations
each turn and returns to its initial position in phase space after the 5th turn and
5Q = 18 full betatron oscillations.
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2. Theory of Accelerator Physics

Betatron resonances

Imperfections of the magnetic fields are unavoidable and can originate from manufac-
turing uncertainties, misalignments of magnets or field gradients at the beginning and
end of each magnet. Such field errors perturb the particle trajectories. If they occur
randomly, the errors average out over many turns and the trajectories remain stable.
If, however, the betatron oscillations are resonant with these perturbations, the errors
add up coherently leading to an unrestricted increase of the oscillation amplitude. As
a result, the beam is lost at the acceptance limit of the accelerator. It is therefore
crucial to avoid such resonances during operation of a particle accelerator. [  Hin08 ,
pp. 289–306;  Wil96 , pp. 118–125]

For dipole field errors the resonance condition is fulfilled when the particle passes
the imperfection with the same betatron phase each turn (integer tune, q = 0). Half
integer tune values (q = 1/2) result in coherent addition of quadrupole field errors
every second turn. Higher order field errors lead to resonances at multiples of 1/n
respectively. While these resonances exist independently in the horizontal and vertical
plane, there are also coupled resonances. These originate from field errors affecting
both planes, e.g. tilted magnets or the coupling terms of higher order multipoles. In
general, the condition for resonances of the order ∣m∣ + ∣n∣ reads:

mQx + nQy = p ; m,n, p ∈ Z (2.4)

Figure  2.3 shows the tune diagram with resonance lines up to the 4th order. While
the number of resonances increases with the order, their strength (width) decreases.
Typically, resonances up to the 5th order have to be taken into account when choosing
an appropriate working point for an accelerator in a region free of resonance lines.
[ Wil96 , p. 125]

2.1.4. Dispersion

In the previous sections it was assumed that all particles have equal momentum.
However, a real beam consists of particles whose momenta are distributed around
the nominal momentum p. For a particle with a momentum deviation ∆p ≠ 0 the
bending radius R ∝ p of the trajectory inside the dipole magnets differs. As a result,
the particle trajectory is shifted towards the out- or inside of the accelerator:

xp(s) = x(s) +D(s)
∆p
p

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xD(s)

(2.5)

where x(s) are the horizontal betatron oscillations (equation  2.2 ) and xD(s) is the
dispersive orbit shift described by the dispersion D(s) [ Hin08 , pp. 263 sq.]. As a
result, the respective orbit length is in- or decreased.
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2.1. Transverse linear beam dynamics
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Figure 2.3.: Tune diagram with resonance lines up to the 4th order. The working point
is marked with a black dot.

2.1.5. Chromaticity

Similar to the dipole bending radius, also the focussing strength of a quadrupole
magnet k ∝ p−1 depends on the particle’s momentum. In linear approximation, a
momentum deviation therefore results in a focussing error of ∆k ∝ −∆p/p.

Both, quadrupole focussing and radius of curvature, essentially define the equations
of motion  2.1 and their solutions. Therefore, a momentum deviation directly leads
to a tune shift ∆Q. This effect is called chromaticity. The natural 

1
 chromaticity is

defined as:

ξnat =
∆Q

∆p/p =
1

4π ∮ k(s)β(s)ds (2.6)

In certain literature 

2
 the relative chromaticity ξ/Q is used in place of ξ. The nat-

ural chromaticity is always negative because stable beam operation requires net fo-
cussing, which means that the full-turn-integral ∮ k(s)ds must be negative. [ Wil96 ,
pp. 135 sqq.;  Hin08 , pp. 297 sqq.;  Wie15 , pp. 509 sqq.]

1The term natural indicates that the effect of sextupole magnets is not included
2While the above definition is common for beam optics textbooks, many measurement related
papers use ξ to denote the relative chromaticity. All equations in this thesis — even if originally
taken from such literature — were modified to match the definition as per equation  2.6 .
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2. Theory of Accelerator Physics

Tune spread

In an accelerator the beam momentum is typically Gaussian distributed. This mo-
mentum spread leads to an intrinsic width of the tune (tune spread) by the effect of
chromaticity. For large chromaticities the tune spread can become so large that the
resonances described in section  2.1.3 can not easily be avoided. For stable operation
of an accelerator, it may therefore be important to compensate the chromaticity.
The tune is additionally broadened by other mechanisms, mainly non-linear fields and
collective effects, such as intra-beam scattering or space charge [ Wie15 , pp. 543, 723].

Chromaticity compensation with sextupoles

A large natural chromaticity can be compensated using sextupole magnets. While
the magnetic field strength of a quadrupole linearly increases with an offset from its
centre, the field of a sextupole is proportional to the square of the offset. This means
that a sextupole’s focussing strength – which is proportional to the field gradient –
increases linearly with the horizontal 

3
 offset: ksex =mx.

In order to compensate the quadrupole focussing error ∆k ∝ −∆p/p, the sextupoles
are placed in regions with large dispersionD. In the dispersive sections the momentum
deviation ∆p leads to a horizontal offset xD = D∆p/p. This subsequently leads to
a momentum dependent focussing in the sextupoles: ksex ∝ ∆p/p. With a proper
choice of the sextupole strength m the focussing error of the quadrupole magnets can
thereby be compensated to achieve a small value for the chromaticity.
A single group of sextupole magnets affects the horizontal and vertical plane equally.
To compensate the chromaticity independently in both planes, at least two groups
of sextupoles have to be arranged at places with different betatron function in the
respective plane. [ Wie15 , pp. 513 sq.;  Hin08 , pp. 299 sq.]

Taking the effect of sextupoles into account, the total chromaticity is:

ξ =
∆Q

∆p/p =
1

4π ∮
[k(s) +m(s)D(s)]β(s)ds (2.7)

3Rotating the magnet by 30° would make the vertical offset determining (which is undesirable)
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2.2. Longitudinal linear beam dynamics

2.2. Longitudinal linear beam dynamics

In circular accelerators, cavities are used to control the energy of the particle beam.
Inside the cavity the force of a radio frequency (RF) alternating field accelerates or
decelerates the particles. Since stable, phase-focused acceleration is only possible
during a half-period of the alternating field, the particle beam has to be bunched.
Just like the betatron oscillations in transverse phase space caused by quadrupole
focusing (see section  2.1.2 ), the particles also oscillate in longitudinal phase space
due to phase-focusing. During these synchrotron oscillations the particle oscillates
back and forth inside the bunch, periodically gaining and losing small fractions of its
energy. [  Wil96 , pp. 201 sqq.]

Revolution frequency and momentum

The revolution frequency frev = v/L of a circulating bunch depends on its velocity v
and the length L of the closed orbit, which is influenced by the rigidity of the dipole
magnets. In linear approximation the latter dependence is expressed by the momen-
tum compaction factor :

αp =
1
γ2

tr
=

∆L/L
∆p/p =

1
L ∮

D(s)

R(s)
ds (2.8)

with the transition energy γtr as a characteristic property. The relation between a
change in revolution frequency ∆frev and a change in momentum ∆p is then described
in linear approximation by [ Wie15 , p. 249]:

∆frev

frev
=

∆v
v

−
∆L
L

= (
1
γ2 − αp)

∆p
p

= η
∆p
p

(2.9)

The proportionality factor is the slip factor η = γ−2 − αp. Depending on whether the
change in velocity or the change in orbit length dominates, this factor can be either
positive or negative. For energies below the transition energy (γ < γtr) the slip factor
is positive and the frequency increases with the beam momentum. For γ > γtr the
dependence is reversed (η < 0). At the transition energy the slip factor vanishes and
phase focusing becomes impossible. [ Hin08 , pp. 267 sq.]
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3. Beam Diagnostics

3.1. Beam position monitors

A beam position monitor (BPM) is a device used to determine the horizontal and ver-
tical position of the particle beam inside an accelerator. It most commonly comprises
capacitive pick-up electrodes sensitive to the beam position and associated readout
electronics.

Capacitive pick-up

A capacitive pick-up exploits the fact, that any charge induces an image charge on a
nearby conducting surface. Two electrodes are placed inside the vacuum chamber on
opposite sides of the beam to pick up the image signal of a passing bunch of charged
particles. The charge induced on the electrodes is proportional to the charge of the
bunch and dependent on its distance to the respective electrode. While the bunch
passes, it produces a measurable displacement current flowing onto the electrodes as
it approaches and then off again as it leaves.
The transverse bunch position can be reconstructed from the difference between the
integrated signal of the left (IL) and the right electrode (IR). To cancel out the
dependence on the total charge, one normalizes the signals (difference over sum):

∆
∑

=
IR − IL

IR + IL
= ζx + non-linear terms

In first order approximation this ratio is proportional to the transverse beam position
where ζ is the sensitivity. In general there are additional non-linear and coupling
terms which depend on the pick-up’s geometry and have to be compensated for.
Button like electrodes are one of the most simple geometries available but have the
disadvantage of a high non-linearity and low sensitivity. By using longer electrodes,
the sensitivity can be increased (strip-line design). Yet a good linearity can only be
achieved with the split-plane geometry, consisting of a cylinder barrel that is diago-
nally cut into two electrodes. [ Sha92 ;  Wen18  ]

At COSY the split-plane BPM type is used, with an inner diameter of 150 mm and
a length of 100 mm [ Mai90 ]. In total 29 BPMs are placed around the ring, each
consisting of two electrode pairs for the horizontal and vertical plane respectively.
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3. Beam Diagnostics

3.2. Tune measurement

To measure the betatron tune, the betatron oscillation frequency has to determined
with respect to the revolution frequency. Therefore, a pick-up structure sensitive to
the transverse beam position is used. Since the oscillation amplitude is usually too
small to get a sufficient signal, the betatron oscillations are resonantly excited. The
fluctuations of the pick-up signal then allow to reconstruct the transverse oscillations.
Their frequency is determined after a Fourier transform of the time structure into
frequency space. [  Jon18 ;  Ste09 ]

3.2.1. Excitation of betatron oscillations

As shown in section  2.1.2 and figure  2.2 , the particle oscillations inside a beam are
incoherent and the remnant coherent fraction is tiny. The oscillation of the beam
centroid is typically in the sub-micrometer range [  Jon18 , p. 244], which is below
the sensitivity of most detector systems. External excitation is required to achieve
a sufficient signal-to-noise ratio when measuring the betatron oscillation amplitude
using a beam position sensitive device.
The excitation enforces a common phase on the particles such that their individual
oscillations become coherent as depicted in figure  3.1 . As a result, the beam centroid
starts to oscillate and these oscillations can be measured.

The beam can either be excited by applying a single kick or an RF signal to the
beam. In the latter case the excitation frequency fex has to be resonant with the
beam oscillation: fex = (n ± q)frev , n ∈ Z. Since the tune q is not known a priori,
one can either vary the frequency by sweeping it across the range where the tune is
expected, or use a signal composed of frequencies in the expected range (band limited
white noise). The RF excitation has the advantage, that by choosing an appropriate
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Figure 3.1.: Trajectories of particles performing coherent betatron oscillations. As a
result, the beam centroid also oscillates.
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3.2. Tune measurement

bandwidth, the spectral power density can be increased and excitation of other un-
wanted resonances can be avoided [ Ste09 , p. 330].

After the excitation is switched off, the individual oscillations start to diverge due to
the differences in their momenta until they become incoherent again. Therefore, the
measurement is only possible while the excitation is active and during the typically
short decoherence time afterwards.

3.2.2. Pick-up signal and its Fourier transform

Each time a bunch of particles passes the pick-up structure, a short signal pulse
proportional to the transverse position is measured. The delta signal of the pick-up
shows a train of pulses evenly spaced in time by the revolution period Trev = 1/frev
as depicted by the continuous signal in figure  3.2a . Since the transverse position os-
cillates around the (non-zero) beam position, the pulse height is modulated with the
(fractional) betatron frequency fq = qfrev.

As derived in appendix  A.1 , the Fourier transform of this continuous signal leads to the
frequency spectrum shown in figure  3.2b . The peaks at the revolution harmonics hfrev
are accompanied by betatron sidebands located at f± = hfrev ± fq which originate
from the modulation of the pulse height. The distance of these sidebands to the
corresponding harmonics — normalized to the revolution frequency — corresponds
to the fractional tune: [ Cas09 , pp. 415 sqq.]

q =
fq
frev

=
f+ − f−
2frev

(3.1)
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(a) Signal in time domain with the pulse
height being modulated by the beta-
tron oscillation.
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(b) Signal in frequency domain with rev-
olution harmonics (red) and betatron
sidebands (orange).

Figure 3.2.: Difference signal at a pick-up for an off-centre bunched beam performing
betatron oscillations. While a continuous signal in time leads to a un-
bounded frequency spectrum, discrete turn-by-turn sampling reduces the
observable frequency range to the region shaded in green.
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3. Beam Diagnostics

Instead of the continuous pick-up signal, it is also possible to use the time discretised
beam positions from a BPM. Here, only one position value is obtained each turn (turn-
by-turn sampling). The Nyquist-Shannon theorem states that for a signal sampled
at a frequency fs, only frequencies f < fs/2 can be reconstructed. For the case of
turn-by-turn sampling this reduces the observable frequency range to the first half
of the revolution frequency, as indicated by the shaded region in figure  3.2b . In this
limited region, only a single betatron sideband appears. To determine the tune, one
has to decide whether the observed sideband is the upper sideband at f+ = qfrev or
the lower sideband of the first harmonic at f− = (1 − q)frev. In general q and 1 − q
can not be distinguished from a single measurement. The ambiguity can be resolved
by varying the tune in a controlled manner and observing in which direction the
betatron sideband moves [ Jon18 , p. 242]. However, usually this is not required since
the approximate range of the tune is known from model calculations.

3.2.3. Different measurement methods

Implementations of tune measurements vary by the type of excitation, the hard-
and software used and the way the tune is determined from the frequency or phase
information. In the following an overview is given on the various methods.

Schottky monitor

Schottky diagnostics trace back to the physicist Walter Schottky, who first described
the concept of current fluctuations (shot noise) in 1918. A Schottky monitor exploits
this concept by detecting the current fluctuations of a particle beam with a pick-
up structure. Using a spectrum analyser, these fluctuations are observed as distinct
bands in the frequency spectrum. Since the longitudinal spectrum obtained from
the sum signal of a pick-up is dominated by the momentum fluctuations, it can be
used to gain information on the momentum distribution and synchrotron motion.
Fluctuations of the transverse beam position are contained in the delta signal (see
section  3.1 ). The corresponding transverse spectrum therefore provides information
on the transverse momentum distribution and betatron motion. [ Bet17 ]

When the betatron oscillations are excited with broadband noise, a Schottky monitor
connected to the delta signal of a suitable pick-up can be used to observe the betatron
sidebands at f±. For unbunched (continuous) beams the revolution harmonics are
absent, but for bunched beams with a sufficient transverse offset they can still be
observed. If the spectrum analyser is configured to display the frequency spectrum
around the hth harmonic, the tune is given by [ Cas09 , p. 416]:

q =
f+ − f−
2frev

= h
f+ − f−
f+ + f−

(3.2)

The advantage of a Schottky monitor is its applicability to bunched as well as contin-
uous beams. Depending on the sensitivity of the pick-up used, the excitation can be
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3.2. Tune measurement

relatively low. However, to get a reasonable good resolution the acquisition time has
to be in the order of a second, which is relatively slow compared to other methods.
Besides the tune, a Schottky monitor can also be used to determine a variety of
other parameters — revolution frequency, beam momentum, momentum spread, syn-
chrotron tune or chromaticity — which makes it a multi-purpose diagnostic tool.
[ Cas09 ]

Regular beam position monitor

With sufficient excitation, a standard BPM can be used to detect the oscillation of
the beam centroid. The position is determined each time the particle bunch passes
by (turn-by-turn sampling). The sampled beam positions undergo a discrete Fourier
transform (DFT) yielding the frequency spectrum. The tune is finally extracted from
the sideband in the normalized frequency spectrum as described in section  3.2.2 .

For efficient computation of the DFT, fast Fourier transform (FFT) algorithms exist,
which iteratively decompose the calculations into smaller parts. For a signal of N
samples, “the FFTs considerably reduce the computational cost for computing the
DFT(N) from 2N2 to O(N logN) arithmetic operations” [ Plo18 , p. 231]. A particu-
larly well known algorithm is the radix-2 FFT by Cooley and Tukey [ Coo65 ] where
the calculations are iteratively split into half. To make use of this algorithm, the
number of sampled beam positions must be a power of two (N = 2n).

Since BPMs exist in any accelerator, this method does not require additional hardware
and is therefore cost saving. However, it is only applicable to bunched beams and
typically requires large excitation power, since the dynamic range of a BPM is usually
small. [ Jon18 , p. 244]

Base-band tune system

To overcome the dynamic range limit of a regular BPM, a dedicated analogue signal
processing is needed, sensitive only to changes of the beam position, but indifferent
regarding the absolute beam position. Such a system is the base-band tune (BBQ)
system [ Gas05 ], which is able to resolve sub-micrometer betatron oscillations. Since
remnant beam oscillations of this magnitude are typically present, only a very weak
or even no excitation at all is required for the measurement. [ Jon18 , pp. 244 sq.]
While such a system allows for non-invasive and therefore continuous monitoring of
the tune, it is typically less precise than methods relying on a strong excitation due
to the relatively large noise level.

Beam transfer function measurement

In a beam transfer function (BTF) measurement the beam is excited with a sinusoidal
signal of precisely known frequency and phase. The frequency is swept over the range
of interest, while the amplitude and phase of the betatron oscillations are recorded as

17



3. Beam Diagnostics

a function of the frequency, e.g. by means of a network analyser [  Bou95 , p. 775]. The
tune resonance can not only be derived from the peak in the amplitude spectrum,
but also from the point of maximum slope in the phase response at ϕ = π/2.
Sweeping the excitation frequency allows for a precise determination of the phase and
therefore increases the measurement accuracy. However, it also requires more time
and makes this measurement method slow. The time resolution can be improved
by sweeping the frequency rapidly (chirp excitation) on the cost of a less precise
measurement [ Sch97 , pp. 43 sq.].

Phase-locked loop tune tracker

A phase-locked loop (PLL) tune tracker continuously adjusts the excitation frequency
to match the betatron tune [ Tan06 , pp. 615 sqq.]. The control variable of such a
closed-loop system is the phase of the beam oscillation, which is regulated to match
the resonance condition ϕ = π/2. Such a system allows to track the time evolution
of the tune very precisely with a resolution in the order of 10−6 [ Ste09 , p. 341].
Yet it requires a sophisticated regulation circuit so as not to get locked at parasitic
resonances.

3.3. Chromaticity measurement

Classically, chromaticity is measured by slightly varying the beam momentum and
measuring the corresponding tune change with either of the methods described in
section  3.2 . Since changing the momentum and tune affects beam operation, this
approach might not always be feasible and alternative methods can be preferable.
Most of the methods described in this section require knowledge of the slip factor η.
It can be obtained from model calculations [ Mad ] or by measuring the momentum
compaction factor.

3.3.1. Momentum change based methods

The momentum of a particle beam can be changed by adjusting either the RF fre-
quency or the magnetic bending field of the dipoles:

RF frequency change

A small change of the RF frequency results in a momentum change proportional to
the inverse slip factor η−1 as described in section  2.2 . The chromaticity can then be
determined by measuring the subsequent tune change: [ Wil96 , p. 339;  Jon18 , p. 248]

ξ =
∆Q

∆p/p = η
∆Q

∆f/f (3.3)
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3.3. Chromaticity measurement

Since the magnetic bending fields are kept constant during the measurement, the
change in momentum also makes the beam go on an outer (or inner) orbit. The re-
sulting change in the horizontal beam position causes the sextupole fields to contribute
to the tune change as described in section  2.1.5 . The measured value is consequently
the total chromaticity.

Dipole bending field change

An alternative method to change the momentum is to adjust the magnetic bending
field while keeping the RF frequency constant. The subsequent momentum change is
given by (see appendix  A.2 ):

∆p
p

=
1

1 − γ2
tr/γ

2
∆B
B

≈
∆B
B

(3.4)

The latter approximation is valid for energies well above transition (γ ≫ γtr). In
this limit the change in bending radius R = p/(qB) is negligible since ∆R/R =

∆p/p − ∆B/B ≈ 0 and hence the orbit is kept constant. This means that — in
contrast to the previously described method — sextupole and higher order fields do
not contribute to the observed tune change. Thus this method allows to measure the
natural chromaticity instead [ Ste09 , p. 347]. It is again obtained from the measured
tune change:

ξnat =
∆Q

∆p/p ≈
∆Q

∆B/B
(3.5)

3.3.2. Passive methods

The methods described in this section do not interfere with beam operation since no
active change of the beam momentum and tune is required.

Schottky monitor: width of betatron sidebands

The transverse Schottky spectrum does not only allow to determine the tune (sec-
tion  3.2.3 ), but also provides a non-invasive method to measure the chromaticity.
The width ∆f± of the betatron sidebands at the hth harmonic is primarily deter-
mined by the momentum spread ∆p/p, but also depends on the fractional tune q and
the chromaticity [ Bou95 , p. 753]:

∆f± = frev
∆p
p

[(h ± q) η ± ξ] (3.6)

The dependence on the chromaticity is of opposite sign for the upper and lower
sideband respectively. While the power (area) in both sidebands is equal, the width
∆f+ of the upper sideband is slightly larger than the width ∆f− of the lower sideband
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3. Beam Diagnostics

(see figure  3.3 ). The chromaticity can be reconstructed from the measured widths in
the Schottky spectrum as [ Cas07 , p. 46]:

ξ = η (h
∆f+ −∆f−
∆f+ +∆f−

− q) (3.7)

While the resolution of this method is limited by the noise in the Schottky signals, its
sensitivity is best for unbunched beams observed at low harmonics [  Jon18 , p. 250].
Since no change of the beam momentum is required, the measurement does not in-
terfere with beam operation and can be used for passive monitoring.

Schottky monitor: amplitude of synchrotron sidebands

For bunched beams, synchrotron sidebands can be observed in the Schottky spec-
trum. The synchrotron motion in longitudinal phase space modulates the particle’s
momentum. Since the chromaticity couples this momentum change to the transverse
betatron motion, the tune is modulated and additional synchrotron sidebands appear
on either side of the betatron sidebands as shown in figure  3.3 . Their amplitude scales
with the chromaticity, but is effected by a number of additional factors like bunch
length and synchrotron frequency. These effects have to be quantified empirically
before the chromaticity can be determined from a measurement [  Reh10 , p. 45].
Since this measurement method relies on the synchrotron motion, it is only applicable
to bunched beams with a sufficient synchrotron tune such that the sidebands are
clearly distinguishable from the tune resonance. Moreover, only the magnitude but
not the sign of the chromaticity can be determined.

Head-tail phase shift

While a particle performs synchrotron oscillations, its longitudinal position inside the
bunch and its momentum constantly change. The momentum reaches a maximum at
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Figure 3.3.: Transverse Schottky spectrum (schematic) with revolution harmonic, be-
tatron sidebands at f± = (h±q)frev and respective synchrotron sidebands.
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3.3. Chromaticity measurement

the head of the bunch and a minimum at its tail respectively. Since the chromaticity
couples this momentum difference to the betatron motion, the phase of the betatron
oscillation differs between head and tail of a single bunch. This is referred to as head-
tail phase shift [ Coc98 ]. Depending on the sign and magnitude of the chromaticity,
this phase difference can lead to labile beam motion (head-tail-instabilities [ San69 ]),
because the bunch’s tail is influenced by the wake field of its head.
Although being an undesirable effect, the phase difference can be used to measure
the chromaticity. Therefore, the transverse position of the head and tail of a bunch
has to be monitored separately over the course of a synchrotron period. After the
phase has been reconstructed, the phase difference ∆ϕ is calculated, which reaches a
maximum after half a synchrotron period. This maximum phase difference ∆ϕmax is
proportional to the chromaticity (∆τ denotes the bunch length): [ Coc98 , p. 284]

ξ = η
∆ϕmax

4πfrev∆τ (3.8)

This method has been demonstrated [ Coc98 ], but is not routinely used since it is
difficult to determine the position of the head and tail separately. Additionally, the
phase measurement requires a sufficient bunch length and coherence during a full
synchrotron period [ Jon18 , p. 253].
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4. Development of a Fast Tune
Measurement System

4.1. Measurement principle

The developed tune measurement system exploits the capabilities of the existing
BPMs at COSY to determine the tune as described in section  3.2.3 . The signal
of each capacitive pick-up is amplified by dedicated preamplifiers and subsequently
processed by the Libera Hadron beam position processor [  Žni16 ;  Kam19 ]. This device
digitizes the signal with a 16 bit analog-to-digital converter (ADC) at 250 MHz. A
dedicated algorithm is used to detect individual bunches and to calculate the bunch
position (see section  3.1 ). The instrument finally provides the horizontal and vertical
beam position together with a timestamp for every bunch (bunch-by-bunch data).
To be able to measure the tune, betatron oscillations are excited by applying a band
limited white noise signal via a stripline kicker. Afterwards, a small amount of the
bunch-by-bunch position data corresponding to the excited transverse oscillations is
read out and analysed. The tune is extracted from the data by performing a DFT
and fitting the resulting tune peak in the frequency spectrum.

COSY is equipped with 29 BPMs distributed around the ring. The sensitivity of
the tune measurement can be increased by choosing a BPM at a location where the
betatron function – and thus the betatron oscillation amplitude – is large. Therefore,
all the available BPMs can be selected for the tune measurement. This approach
also allows flexibility in case of malfunctions of some BPMs and provides a means to
cross-validate the measurement with different, independent diagnostic devices.

In the following sections the various aspects of excitation, data analysis and integra-
tion of the tune measurement into the COSY control system are discussed.

4.2. Noise excitation

The betatron oscillations are excited using band limited white noise. Its spectral
power density can be adjusted by choosing an appropriate frequency range and signal
voltage. This excitation method has the benefit of being fast and thus causing the
least beam loss. Therefore, the requirements of a short measurement time and mul-
tiple measurements per cycle can be fulfilled.
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Figure 4.1.: Signal-flow graph of the noise excitation system with controller software
(blue) and RF hardware components (black)

Figure  4.1 shows the signal-flow graph of the noise excitation system. An arbitrary
function generator (AFG) is used to generate the excitation signal from a noise se-
quence stored in its memory. The generator, a Tektronix AFG3021C with an output
frequency of up to 25 MHz, is controlled by a Python program over Ethernet using
the VXI-11 protocol. Besides setting general parameters like voltage level, signal
duration and delay, the implementation also takes care of computing the noise se-
quence and uploading it to the device as a custom waveform. Given the frequency
band, sampling frequency and sample length, the noise sequence is computed via
an inverse Fourier transformation (Fourier synthesis) with random phase. The volt-
age level is then scaled according to the desired average power of the generated signal.

The AFG is triggered via the COSY timing system. Optionally, an automatic software
trigger linked to the existing BPM trigger can be used to simplify the configuration
procedure, especially if many measurements are envisaged within a machine cycle.
On the trigger signal, the AFG outputs the noise sequence in burst mode for the
specified duration.

The output signal from the generator is divided using a two-way splitter for the
horizontal and vertical plane and two subsequent 180° splitters inverting the signal
polarity. Each of the four channels is then amplified separately with a power amplifier,
before the RF signal is guided to the 1.05 m long electrodes of the stripline kicker.
The connection is made such, that the signals applied to opposite electrodes are of
opposite polarity in order to produce a transverse electric field.
During initial tests it became apparent that the existing 15 W power amplifiers of
the stripline kicker were not sufficient for tune measurements at high beam momenta
above 1 GeV/c, since the excitation of betatron oscillations was too weak. Therefore,
the system was connected to the 150 W power amplifiers of the currently unused
transverse damping system to increase the excitation power.
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4.3. Data analysis

Shortly after the excitation, the acquired bunch-by-bunch position data is read out
from the Libera Hadron processors and subsequently analysed to determine the tune.
Optionally, an additional background measurement prior to the excitation can be per-
formed. By subtracting the background spectrum, spurious signals can be eliminated
from the frequency spectra and the signal-to-noise ratio is improved, allowing for a
more precise tune measurement.
With sufficiently long excitation a continuous tune measurement over several seconds
can be performed. This allows to investigate the tune evolution over time, e.g. during
the acceleration ramp.

4.3.1. Readout of bunch-by-bunch data

The readout of the bunch-by-bunch data is automatically started with a sufficient
delay after the data acquisition of the Libera Hadron processors was triggered by the
COSY timing system. The positions as well as the timestamps of the detected bunches
are transferred via the Channel Access (CA) protocol. This protocol is a standard
of the Experimental Physics and Industrial Control System (EPICS), which is the
control system being used at COSY. Since the amount of data to be transferred can
become considerably large for continuous tune measurements over several seconds,
the download needs to be performed in chunks. Thereby the integrity of the data has
to be ensured, especially for cases where some bunches were not detected correctly,
e.g. due to low beam intensity. This is achieved by special handling of duplicate or
missing timestamps, heuristic checks for leftover data in the Libera Hadron’s buffers
as well as plausibility verifications on frequency, bunch number and position values.

The bunch timestamps are used to select a subsample in the data corresponding to
the excited betatron oscillations. If the optional background measurement is enabled,
an additional subsample prior to the excitation is also extracted for analysis. More-
over, the revolution frequency is calculated from these timestamps.

The resolution of the tune measurement is directly determined by the length of the
subsample used for the spectral analysis. For a signal consisting of N bunch positions
sampled at the revolution frequency, the discrete frequency spectrum is limited by
the Nyquist frequency at frev/2. Therefore, the spectrum consists of N/2 points in
the range of r = f/frev ∈ [0,0.5], limiting the resolution to 1/N .
To achieve a precision of 10−3 (three digits), bunch positions for at least 1000 con-
secutive turns have to be acquired. The number of turns has to be multiplied with
the number of stored bunches per turn given by the harmonic h of the COSY RF.
Rounding up to the next power of two allows to use the fast radix-2 FFT algorithm
for numerical computation of the DFT (see section  3.2.3 ). The default subsample size
used for the analysis was chosen as N = 213 = 8192 bunches, but can be configured
at runtime. This ensures a high resolution even for h = 4 while keeping the required
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measurement time and computational costs low. Considering a revolution frequency
from 0.5 MHz to 1.6 MHz and 1 ≤ h ≤ 4 for COSY, the required measurement time
ranges from 2.5 ms to 33 ms.

4.3.2. Fourier transform and tune resonance fit

A discrete Fourier transform (DFT) is performed on the bunch position subsamples
by means of an FFT algorithm implemented using the NumPy library [ Num ;  Coo65 ].
This process is repeated for both, the horizontal and vertical plane, as well as the
optional background measurement. After subtraction of the background, the spectra
are smoothened by a moving average filter to reduce the residual noise and filter out
spikes. As a result, the frequency spectrum normalized to the bunch frequency is
obtained. Multiplication with the number of stored bunches h yields the resonance
spectrum in units of r = f/frev. The spectrum is cropped to the first half interval from
0 to 0.5 since the h − 1 repeated mirror images above r = 0.5 contain no additional
information.

Figure  4.2 shows the obtained frequency spectra for an exemplary tune measure-
ment. The non-vanishing width of the betatron resonance peak is the result of the
mechanisms described in section  2.1.5 . Since it is the superimposed signal of many
independent particles, the peak can adequately be described by a normal Gaussian
distribution according to the central limit theorem. The chromaticity induced tune
broadening is typically also of Gaussian shape since the beam momentum is usually
normal distributed.
Using a least square optimisation, a Gaussian distribution is fitted to each of the
obtained spectra as shown by the close-ups in figure  4.2 . This yields the fraction r̂ as
the mean of the distribution, from which the tune can be deduced as q = r̂ or q = 1− r̂
(see section  3.2.2 ). The distinction is made based on the tune search range, which can
be adjusted by the operator. This range is also used to limit the fit to a certain region
of the spectra and to calculate the absolute tune from the fractional one. The default
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Figure 4.2.: Frequency spectra of a tune measurement with Gaussian fits (close-ups)
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tune search range for the lattice of COSY is Q ∈ [3.5,3.7] corresponding to a fitting
range of r ∈ [0.3,0.5] and an absolute tune of Q = 4− r̂. The fit is only accepted if the
fitted tune peak is significantly outside the noise level, that is, if the peak amplitude
is larger than six standard deviations of the background signal. The measurement
uncertainty is computed by summation in quadrature of the fit uncertainties and
the intrinsic tune width (standard deviation of the Gaussian). In the following this
uncertainty is denoted with a “±” to emphasize that it also includes the tune spread.
The procedure is repeated separately for both planes yielding the horizontal tune Qx

and the vertical tune Qy with respective uncertainties. Finally, the values and uncer-
tainties of all successful measurements across multiple BPMs are combined.

For cases where the transverse motion is coupled 

1
 , the spectra can contain two reso-

nance peaks with different intensities each (figure  4.3 ). To distinguish the two tunes
Q1 and Q2 the search range can be adjusted accordingly. An option to determine
both tunes from a single measured plane is also implemented. One has to note, how-
ever, that for strong coupling and Qx ≈ Qy, the two measured tunes Q1 and Q2 do
not correspond to the vertical and horizontal tune but will stay separated. [  Wie15 ,
pp. 692 sqq.]

4.3.3. Continuous tune measurement

The tune can also be monitored continuously for several seconds by exciting the
betatron oscillations during the complete timeframe of interest. This way the tune
can be tracked e.g. during the acceleration ramp.
For the continuous tune measurement, bunch-by-bunch positions with N = O(106)

samples are loaded from the Libera Hadron for a single BPM of choice. The time
dependent frequency spectra (spectrograms, figure  4.4 ) are calculated via a short-time

1Coupling can occur due to rotated magnetic fields or in presence of longitudinal fields. The latter
are generated by solenoids as used for electron cooling — a routine operation at COSY.
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Figure 4.3.: Frequency spectra of a tune measurement with coupling (logarithmic scal-
ing). The horizontal tune at Qx = 3.563 ± 0.003 couples to the vertical
plane and appears as a second smaller peak in the vertical spectrum.
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Figure 4.4.: Tune spectrogram over 2 s for a proton beam at p = 521 MeV/c. The
visible tune change was caused by accelerating the beam by 0.6 MeV/c
between 0.5 and 1.5 s after the trigger. The crossing of the vertical 2/3
resonance at t = 1.3 s causes a significant beam loss (lower plot).
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Fourier transform (STFT): The data is divided into segments, each of which is Fourier
transformed similarly to the ordinary tune measurement. This is implemented using
the SciPy library [ Opp99 , pp. 714 sqq.;  Sci ].
The number of bunch positions per segment Nseg does not only determine the resolu-
tion in tune δq = 1/Nseg as described above; It also determines the time resolution of
the measurement: δt = Nseg/frev. Since the product δq ⋅ δt = 1/frev is fixed by the rev-
olution frequency, a reasonable compromise has to be found. With Nseg = 210 = 1024
at a typical frequency of frev ≈ 1 MHz a resolution of three digits in tune and 1 ms in
time can be achieved. This default value can be adjusted by the operator as needed
for the specific application.

Figure  4.4 shows an exemplary tune spectrogram for both planes in which the tunes
are clearly visible as bold lines. Each spectrum is fitted as described above, yielding
the tune in its time evolution as visualized in the tune diagram (figure  4.5 ). For
the given example, the tune change was induced by slightly increasing the beam
momentum. Thereby, the vertical tune crosses the 2/3 resonance. The resulting
beam loss is clearly visible as a reduction in the number of stored particles (lower
plot of figure  4.4 ). However, the continuous excitation over several seconds itself also
reduces the particle number from 5 × 109 to 4 × 109 over 1 s.
To reduce the excitation induced beam loss for continuous tune measurements, a pulse
width modulation (PWM) is implemented to reduce the average excitation power. By
specifying a duty cycle for the noise sample, a pulsed excitation can be achieved. As
a result, the tune appears as a dashed line in the spectrograms, which also helps to
clearly distinguish the tune resonance from other spurious signals.

The continuous tune measurement also provides the basis for the chromaticity mea-
surement, which is discussed in chapter  5 .

4.4. Integration into the COSY control system

At COSY the decentralised Experimental Physics and Industrial Control System
(EPICS) [ Epi ] is used. Distributed Input / Output Controllers (IOCs) control hard-
ware device, record data and perform online data analysis. They provide process
variables (PVs) to receive data and modify parameters. These PVs can be accessed
by clients over a dedicated protocol, called Channel Access (CA). This includes the
graphical user interfaces (GUIs) in the control room, which are used to operate the
accelerator, as well as the central data archiving system and automated scripts.

The routines for the excitation and tune measurement are implemented with the
Python programming language. Therefore, the Python Device Support (PyDevSup)
library [ Mic ] is used as a C based IOC implementation with an interface to Python.
The developed EPICS IOC provides the PVs required for the tune measurement and
calls the functions from the underlying Python implementation to communicate to
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the hardware and perform the data analysis.

A dedicated GUI was developed to allow the operators to set up and configure the
fast tune measurement system as well as to display the measurement results in a
clear manner. The main interface (figure  4.7 ) allows to configure the beam excitation
and measurement parameters. The operator can choose the BPMs to be used for the
measurement from the list of available devices. By clicking on the respective labels,
the frequency spectra and fits can be observed for each BPM (figure  4.8 ).
A tune diagram (figure  4.6 ) shows the current working point and up to five custom
references. It includes the resonance lines to be avoided to support the operators in
setting up and running the accelerator.
Screenshots of the GUI for the continuous tune measurement can be found in ap-
pendix  B.2 .
The documentation and operating manual for the developed measurement system
is accessible via a “help” button. Additionally, the PVs were also registered in the
central data archiving system and are thereby stored alongside other machine and
measurement parameters.

Figure 4.6.: Screenshot of the tune diagram in the fast tune GUI, showing resonances
up to the 4th order. The operator can set a number of references to
compare different working points.
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Figure 4.7.: Screenshot of the main fast tune GUI. Measurement options (upper left),
beam excitation setup (upper right), measurement results (lower left) and
time structure of the extracted subsamples (lower right).

Figure 4.8.: Screenshot of a frequency spectrum of a single BPM in the fast tune GUI.
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5. Development of a Chromaticity
Measurement System

5.1. Measurement principle

The developed chromaticity measurement is based on the well established, classical
method described in section  3.3.1 , where a momentum change is induced and the
subsequent tune change is measured. This method has the benefit that it can be
built on top of the developed tune measurement. Since a measurement of the total
chromaticity is envisaged, the momentum is changed via the revolution frequency
while keeping the bending field constant.
Preliminary experiments with single tune measurements before and after jump-like
momentum changes showed that multiple repetitions are required to achieve a suf-
ficient measurement accuracy. Therefore, a slow but steady momentum change was
chosen instead. This is realized by sweeping the RF frequency and continuously mea-
suring the tune at the same time. By using a linear fit, the measurement accuracy is
improved especially for small values of the chromaticity where the tune changes only
slightly. This is particularly important for compensation of the chromaticity.
Using equation  3.3 , the chromaticity is calculated from the linear change in revolution
frequency and tune — both of which are derived from the bunch-by-bunch positions
and timestamps. The only additional quantity required is the slip factor η, which can
either be taken from a MAD model calculation or measured separately.

5.2. RF frequency sweep

In general, the frequency change — and therefore the momentum change — should
be as large as possible to increase the sensitivity to small values of the chromaticity.
However, the amplitude of the change is limited by several aspects:

• Since the linear chromaticity is to be measured, the change must be small enough
such that the beam dynamics stay in the linear regime 

1
 

• A momentum change at fixed bending fields results in a dispersive orbit change,
which has to be kept small in order to stay within the accelerator’s acceptance

1In extension to the linear regime, a non-linear chromaticity can be defined, taking higher order
tune changes into account [  Wie15 , p. 517]. See also section  6.4.2 .
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• If the change in tune is too large, the beam can become unstable as betatron
resonances might be hit

According to [ Ste09 , p. 348], a relative momentum change ∆p/p in the range of 10−4 to
10−3 is to be favoured. The corresponding frequency change for a typical slip factor
of η ≈ 0.6 for COSY is in the sub-permille range. While preliminary tests showed
non-linearities for larger frequency changes in the order of ∆f/f ≈ ±1 ‰, changes of
about ±0.3 ‰ proved adequate.
The duration of the frequency sweep is chosen as a trade-off between excitation in-
duced beam losses and a sufficient resolution in time for the linear regression. A sweep
duration of about 0.5 s to 1 s was found to be adequate, longer sweep durations do not
improve the measurement results but lead to an increased beam loss. Therefore, a
symmetric frequency sweep of amplitude 0.6 ‰ (±0.3 ‰ with respect to the nominal
frequency) and 1 s duration is suggested and used as default for the chromaticity mea-
surement. In contrast to a unipolar asymmetric sweep, a bipolar symmetric sweep
allows for a twice as large amplitude and is to be preferred.

At COSY, all synchronously ramped components are described as a function of time
by piecewise polynomials. These are calculated prior to operation and stored in so
called fgen files (see appendix  B.1 ). The fgen files for the RF are loaded to a frequency
generator, which outputs a variable sinusoidal signal according to the predefined fre-
quency, phase and amplitude. After amplification, this signal is wave-guided to the
RF cavity where the beam is bunched and accelerated.
For a chromaticity measurement, the bunched beam is temporarily accelerated by
a precise linear frequency sweep. This is realized by adding corresponding linear
segments to the fgen file. A dedicated script was developed to simplify the setup of
the required frequency sweeps. This script reads the frequency fgen file and parses
its contents. The polynomial at the specified cycle time is cut such that the sweep
can be inserted. Given the sweep duration and its relative amplitude, three linear
polynomials are added, creating a symmetric sweep as depicted in figure  5.1 . The
actual measurement takes place only during the rising flank. This process is repeated
for each specified cycle time, allowing for multiple chromaticity measurements in a
single machine cycle. Afterwards, the modified fgen file is saved and sent to the
frequency generator as usual.

t

f
amplitude

duration

time

Figure 5.1.: Symmetric frequency sweep
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5.3. Data analysis

For simplicity, the revolution frequency is reconstructed from the same bunch-by-
bunch data that is being used for the tune determination. Therefore, the bunch
timestamps provided by the Libera Hadron with a resolution of δt = 4 ns are used.
The revolution frequency can be determined with an accuracy of δf/f = fδt ≈ 4 ‰
for a typical revolution frequency of O(1 MHz). Since this is not sufficient for a chro-
maticity measurement, the resolution is increased by averaging over 1000 consecutive
turns. This allows to resolve frequency changes down to 10−5 while still providing a
time resolution of about 1 ms. The magnitude ∆f of the frequency change can then
be determined by a linear regression to the data.

The corresponding tune change is extracted from the spectrograms provided by the
continuous tune measurement. Therefore, a two-dimensional fit is performed in the
given tune search range and the time range of the linear frequency change. The scalar
field fit function is:

A(q, t̃) = A0 +A1 exp
⎛

⎝
−
(q − q0 −∆q ⋅ t̃)2

2σ2
q

⎞

⎠
(5.1)

with the tune q, the normalized time t̃ ∈ [0,1] and the fit parameters A0 (offset), A1
(amplitude), q0 (initial tune), ∆q = ∆Q (tune change) and σq (tune spread). Since
the amplitude of the spectrogram might vary over the measurement time, which can
misguide the fitting algorithm, every spectrum is normalized to its maximum before
applying the two-dimensional fit. Figure  5.2 shows an exemplary spectrogram for a
chromaticity measurement (before normalisation) and the linear tune change from q0
to q0 +∆q as determined by the two-dimensional fit.
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The horizontal and vertical chromaticity ξx,y is finally calculated from the relative
frequency change and the tune change using equation  3.3 . If the slip factor η is not
known at the time of measurement (e.g. because it is measured afterwards), the ratio
ξ/η = ∆Q/(∆f/f) is calculated instead.
For determination of the measurement uncertainty, not only the fit error is consid-
ered but also the tune resolution δq = 1/Nseg (the pixel height in the spectrogram) by
summation in quadrature. This prevents highly accurate fitting results from leading
to a false precision beyond the true resolution, which is particularly important if the
chromaticity is close to zero.

Considering a momentum change in the order of 10−4 to 10−3 as discussed in sec-
tion  5.2 , a tune resolution δq in the same order of magnitude is required to reach a
resolution of one unit chromaticity. This can be achieved by computing the STFT on
segments of 1000 to 10 000 bunch positions. Using a power of two, a default value of
Nseg = 213 = 8192 was chosen for the chromaticity measurements. With the product
δq ⋅ δt = 1/frev fixed by the revolution frequency, the time resolution δt is typically in
the order of 10 ms. Since a sufficient number of tune measurements is required for
the linear regression, the time resolution gives a lower limit on the sweep duration as
discussed in the previous section.

5.4. Integration into the COSY control system

The EPICS IOC and the corresponding GUIs for the tune measurement described
in section  4.4 are extended with the readout and data analysis routines of the chro-
maticity measurement. The additional interface (figure  5.3 ) displays the frequency
and tune change and the result of the linear fits. Together with the slip factor, the
determined momentum change and chromaticity are shown.
Just as for the tune measurement, the data is archived centrally and the documenta-
tion and operating manuals are accessible via the “help” button.
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Figure 5.3.: Screenshot of the chromaticity measurement GUI
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6. Commissioning and Measurements at
COSY

6.1. Systematic study of tune signal strength

To determine the tune from the measured frequency spectra, the tune signal must
be as large as possible such that it is clearly distinguishable from the background
noise and any spurious signals. In this section the dependence of the tune signal
strength is investigated with respect to the excitation power, the beam intensity, and
the local amplitude of the betatron function at the BPM. To quantify the strength
of the tune signal, the amplitude A of the Gaussian fit to the tune resonance peak in
the frequency spectrum is chosen as observable. This amplitude does not include the
background signal (offset).
The study is carried out with a deuteron beam at a momentum of p = 970 MeV/c
consisting of 1.60(3) × 1010 deuterons stored in COSY. As can be seen in figure  6.1 ,
the measured tune is Qx = 3.533 ± 0.012 and Qy = 3.590 ± 0.002. Since the horizontal
tune is much wider, the amplitude is reduced compared to the vertical spectrum.

6.1.1. Dependence on excitation power

The dependence of the tune signal strength on the excitation power is studied. There-
fore, the power of the noise excitation signal is systematically changed from 1 mW to
12 mW at the signal generator output. This corresponds to a range of 4 W to 48 W
applied to the beam after amplification. For each measurement, the beam is excited
over 33 ms with a noise signal in the frequency range of 0.3 to 0.5 times frev = 0.75 MHz
(h = 1). The tune is then determined using an FFT over 213 = 8192 sampled bunch
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Figure 6.1.: Tune measurement for the excitation study
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positions. For each setting of the excitation power, 15 measurements are performed
to determine the average amplitude of the Gaussian fit as a measure for the strength
of the tune resonance signal.

Figure  6.2 shows the measured dependency for three exemplary BPMs in the hori-
zontal as well as vertical plane. The measured amplitude A scales with the square
root of the excitation power P as

A(P ) = p0 ⋅
√
P + p1 (6.1)

The determined fit parameters pi are listed in appendix  C.1 , where also additional
plots for the other BPMs are given.
The square root dependency can be explained by the fact, that the average power of
the excitation signal

P =
1
T

T

∫
0

P (t)dt = 1
T

T

∫
0

U(t)2

Z
dt (6.2)

scales with the square of the signal voltage U(t) where P (t) is the instantaneous
power, T is the signal duration and Z is the impedance of the stripline kicker the
signal is applied to. The resulting oscillating electric field E(t) ∝ U(t) between the
stripline electrodes drives the betatron oscillations. This process can be described
by an ordinary harmonic oscillator driven by the force F (t) = eE(t). The betatron
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Figure 6.2.: Tune signal strength (amplitude of the Gaussian fit) in dependence of the
excitation power. Fits are shown with a 1σ confidence interval.
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oscillation amplitude increases until the exciting and damping forces compensate each
other. In this steady state, the oscillation amplitude x̂ of the harmonic oscillator
is proportional to the driving force and therefore also proportional to the voltage
U ∝

√
P . Hence, the measured dependency of the betatron oscillation amplitude

agrees with the theoretical expectation x̂∝
√
P .

6.1.2. Dependence on betatron function

The amplitude of the tune resonance does not only depend on the excitation power
but also varies significantly between different BPMs. If the amplitude scaling fac-
tor p0 from the fits with equation  6.1 is plotted against the betatron function βx,y(s)
at the location s of the respective BPM (figure  6.3 ), a strong correlation becomes
visible. The values of the betatron function were calculated using a MAD simulation
of the COSY lattice at the time of the measurement (see figure  C.2 and tables  C.1 

and  C.2 in the appendix). It has to be noted, that the simulation predicted a tune
of Q1 = 3.613 and Q2 = 3.695 which is not in good agreement with the measured
tune. This means that the betatron functions predicted by the MAD model are also
imprecise. However, the deviation is expected to be negligible since the tune is the
integral over the betatron function (equation  2.3 ) and therefore a small deviation in
the betatron function results in a large deviation in tune.

Despite the model uncertainty, a clear square root like dependence of the amplitude
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Figure 6.3.: Tune signal strength (scaling factor p0) in dependence of the betatron
function at each BPM based on a MAD model calculation.
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scaling factor p0 on the betatron function is found:

p0(βx,y) = b0 ⋅
√
βx,y + b1 (6.3)

The optimized fit parameters bi for the horizontal and vertical plane are listed below.
The parameter b1 is negligible within the fit uncertainty.

Table 6.1.: Fit parameters for the tune signal strength dependence

b0 in a.u./
√

Wm b1 in a.u.
Vertical BPMs 0.239(17) 0.069(54)
Horizontal BPMs 0.048(11) 0.026(34)

The functional dependence is in agreement with the theoretical description (equa-
tion  2.2 ): the envelope of the betatron oscillation amplitude scales with x̂ ∝

√
β(s).

It is therefore preferable to perform the measurement using BPMs located at places
with a large betatron function. For the machine settings presented here, BPM 8 is
the best choice with βx = 15.42 m and βy = 16.63 m. In addition, the BPMs 9, 17 and
22 have the largest betatron function in the vertical plane and the BPMs 8, 20 and
13 in the horizontal plane respectively (see tables  C.1 and  C.2 ).

6.1.3. Dependence on beam intensity

To investigate the influence of the beam intensity, the number of particles stored in
COSY is varied by applying a PWM at the ion source (“micro-pulsing”). Thereby
the excitation power is kept fixed at 48 W. For every setting of the beam intensity,
the tune measurement is repeated at least 17 times (except for the lowest intensity
where only 8 repetitions where made).

Figure  6.4 shows the result of the beam intensity study. In order to compare different
BPMs, the measured amplitudes were normalized to the square-root of the betatron
function. While the amplitude of the vertical tune resonance clearly increases with
higher beam intensity, the amplitude in the horizontal plane stays about constant.
To discuss this behaviour, several aspects can be taken into account. In general, an
increased number of particles draws more power from the exciting transverse field.
However, this amount of power is negligibly small compared to the total excitation
power even for 1011 particles, and therefore can not explain the observed dependence.
A higher intensity also increases the sensitivity of the BPMs — especially since the
signal amplification is constant — and thereby reduces the noise background. There-
fore, one would expect an increase in the amplitude A. This is apparently not the
case for the horizontal plane. The reason for this fundamental difference might be
the distinct beam emittance, which is about 6 times larger in the horizontal plane.
To better understand this behaviour, further systematic studies are necessary to de-
termine the effect of the beam emittance. Additionally, the influence of the BPM’s
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6.1. Systematic study of tune signal strength

pre-amplifiers should be quantified independently in both planes.

In summary, the study shows that the tune measurement in the horizontal plane can
not be improved by increasing the beam intensity, since this parameter only affects the
vertical plane. However, choosing a large betatron amplitude and excitation power
increases the signal amplitude in both planes and can therefore be used to improve
the signal-to-noise ratio.
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Figure 6.4.: Tune signal strength in dependence of the beam intensity. For each BPM,
the amplitude A is normalized to the value of the betatron function β(s)
at the respective BPM.
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6. Commissioning and Measurements at COSY

6.2. Tune control with quadrupole magnets

For commissioning of the tune measurement system, the systematic adjustment of
the working point using quadrupole magnets is demonstrated.

The lattice of COSY comprises a sixfold periodic ring structure and two straight tele-
scopes (see figure  C.3 ). Each telescope is equipped with four symmetric quadrupole
triplets. A triplet consists of a focusing (F), a defocusing (D) and another focusing
element, where the defocusing element needs to be twice as strong and is therefore
realized with two magnets. With a phase advance of ∆Ψ = 2π, the telescopes produce
a 1:1 optical image, offering space for the beam cooling and diagnostic systems as
well as internal experiments. [ Bec86 , pp. 7 sqq.;  Hin08 , pp. 184 sqq.]
The arcs are equipped with six mirror-symmetric FODO structures. The vertically
focusing quadrupole magnets (F) are refereed to as MQU 1, 3 and 5; the horizontally
focusing ones (vertically defocusing, D) are named MQU 2, 4 and 6. By adjusting
the focusing strength k of these quadrupole groups, the tune can be controlled and
set to the desired working point.

To adjust the tune, its dependence on the quadrupole strength is first quantified by
measuring a tune response matrix. The determined matrix is then used to calcu-
late the necessary settings for the quadrupole magnets in order to reach the desired
working point. This is demonstrated in the following using a deuteron beam of 1010

particles at injection energy (Ekin = 55 MeV, p = 460 MeV/c).

6.2.1. Measurement of the tune response matrix

The focusing strength k of a quadrupole magnet is proportional to the electric cur-
rent IMQU flowing through its windings. The relation between the current of the two
quadrupole groups and the horizontal and vertical tune Qx,y can be described in linear
approximation by the tune response matrix M :

(
∆Qx

∆Qy
) = M (

∆IMQU 1,3,5
∆IMQU 2,4,6

) (6.4)

The tune response matrix is determined from tune measurements of at least three
different quadrupole settings. Therefore, the system of linear equations obtained
from the pairwise difference of each two measurements is solved. In the simplest case,
three measurements are performed where only one of the two quadrupole groups is
modified at a time. The linear system is then already diagonal, and the columns of
the matrix can be calculated simply by dividing ∆Q/∆I.
Figure  6.5 shows such a series of tune measurements for three different settings ac-
cording to table  C.3 . From these measurements, the tune response matrix follows:

M = [
−0.0294(50) 0.0576(31)

0.0709(21) −0.0320(11)]1/A (6.5)
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Figure 6.5.: Adjustment of the working point (WP) in the tune resonance diagram.
Tune measurements for different settings of the quadrupole magnets are
shown (purple: ∆IMQU 1,3,5 = 0.5 A, red: ∆IMQU 2,4,6 = 0.5 A). The linear
tune shift is indicated with arrows and the uncertainty on the matrix
calculation is marked with an ellipse.

Thereby, the uncertainty of the matrix is determined from the standard deviation of
multiple tune measurements for each quadrupole setting using different BPMs.

6.2.2. Adjustment of the working point

The required quadrupole settings for a desired tune can be calculated from the original
working point (I⃗orig, Q⃗orig) using the inverted tune response matrix M−1:

(
IMQU 1,3,5
IMQU 2,4,6

) = I⃗orig +M−1 [(
Qx

Qy
) − Q⃗orig]

M−1 = [
10.2(10) 18.3(12)
22.6(19) 9.4(22)]A

(6.6)

Using this equation, new quadrupole setting for a desired tune of Qx = 3.602 and
Qy = 3.652 are calculated (table  C.3 ). The original and desired working point are
also shown in figure  6.5 . An ellipse marks the area where the new working point is
expected, considering the uncertainty of the measured tune response matrix. After
applying the determined quadrupole settings, the new working point is measured to
be Qx = 3.611 ± 0.008 and Qy = 3.652 ± 0.001. This corresponds to the desired working
point within the expected uncertainty. Hence, the measurement and adjustment of
the tune were demonstrated successfully.
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6. Commissioning and Measurements at COSY

6.3. Evolution of the tune during acceleration

In this section, the measurement of the tune evolution during acceleration of a
deuteron beam to a momentum of p = 970 MeV/c is demonstrated using the developed
continuous tune measurement.
Figure  6.6 shows the tune in the horizontal and vertical spectrogram as well as the
beam’s momentum and revolution frequency for the complete acceleration ramp.
During the first 100 ms the previously unbunched (continuous) beam is bunched,
which is reflected in the spectrograms by the narrowing tune signal. The beam is
then accelerated by synchronously ramping up the frequency of the RF cavity and
the fields of the magnets. While the tune — emerging as bold line in the spectro-
grams — changes only slightly throughout the ramp, one can also observe spurious
signals that change rapidly. These interfere with the tune measurement especially in
the horizontal plane. After about 1 s, the nominal momentum (flat top) is reached.

Since the noise used for excitation of the betatron oscillations has a fixed frequency
band, this band has to be chosen appropriately such that the tune resonance is excited
and visible throughout the whole measurement. Here, a frequency band of 0.3 to 0.5
times 750 kHz (flat top revolution frequency) was used. At the injection frequency
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Figure 6.6.: Betatron tune during acceleration of a deuteron beam from 460 MeV/c
to 970 MeV/c. The beam was excited with white noise in the range from
0.3 to 0.5 times 750 kHz, as indicated by the dotted lines (the mirrored
band is also shown). Regions outside the excitation band are shaded.
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6.3. Evolution of the tune during acceleration

(frev = 392 kHz), the relative excitation band is fex/frev ∈ [0.57,0.96]. This leads to an
excitation of the sideband below the first revolution harmonics at f/frev = 1−r = Q−3
(compare section  3.2.2 ). As the beam is accelerated and the revolution frequency
increases, the relative excitation band shifts to fex/frev ∈ [0.3,0.5], finally exciting
the first sideband at f/frev = r = 4 − Q. During the transition, these bands cross
and partially overlap as indicated by the dotted lines in figure  6.6 . This ensures a
continuous excitation where only a small region (shaded) is not excited.
Especially in the horizontal spectrogram one can clearly see that the tune signal
strength decreases throughout the measurement. The gradual decrease can be ex-
plained by the fact that the beam rigidity increases while the beam gains momentum,
causing the excitation to be less effective. The significant drop at the dashed line
near 0.8 s is caused by the betatron sideband at 1 − q leaving the excitation band.
Since only the sideband at q remains excited, the spectral excitation power density is
effectively halved.

In figure  6.7 the evolution of the betatron tune during the ramp is plotted in the tune
resonance diagram. It is apparent, that the accuracy of the horizontal measurement
is lower than the vertical one, as reflected by the larger uncertainties. This is because
the fit is disturbed by the spurious signal at the beginning of the ramp and suffers from
a reduced signal strength at the end of the ramp. Nevertheless, the transition from
injection tune to flat top tune is clearly defined. The tune changes comparatively
fast during the first 200 ms of the ramp, and then slowly until the nominal beam
momentum is reached. Throughout the complete ramp, no resonance lines (up to the
4th order) are crossed and the beam survives.
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Figure 6.7.: Tune diagram corresponding to figure  6.6 . The transition between in-
jection tune (Qx = 3.589 ± 0.010, Qy = 3.629 ± 0.006) to flat top (Qx =

3.538 ± 0.010, Qy = 3.583 ± 0.006) is indicated by the colour gradient.
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6. Commissioning and Measurements at COSY

6.4. Chromaticity measurement and compensation

The chromaticity measurement system is commissioned using a machine configuration
similar to the experimental setup used by the JEDI collaboration. A deuteron beam
is accelerated to 970 MeV/c and cooled in all six dimensions of phase space using
electron cooling. Thereby the momentum spread is reduced to ∆p/p = 1.4(2) × 10−4.
After the electron cooling is switched off with the electron cooler’s solenoid remaining
at its nominal field strength, 5 × 109 particles are stored in COSY for use by the
experiment. The slip factor was measured to be η = 0.533(1). The measurements
presented in this section were carried out after the electron cooling but without prior
orbit correction.

6.4.1. Measurement stability

The chromaticity measurement is tested with a positive symmetric frequency sweep
of ∆frev/frev = 0.3 ‰ amplitude over 2 s. The STFT is performed on segments of
Nseg = 213 = 8192 consecutive position measurements. Figure  6.8 shows the measured
linear tune change. The tune resonance peak in the spectrum is narrow due to the
small momentum spread of the cooled beam. A comparison to a measurement with-
out cooling is given in appendix  C.3 where a much wider peak is observed. Even
without cooling, the slope of the linear fit can be determined with high precision and
the measured chromaticities agree within their uncertainties.

Furthermore, the duration, amplitude and polarity of the frequency sweep is varied to
examine the stability and systematic uncertainty of the chromaticity measurement.
Figure  6.9 shows the results of a number of measurements in subsequent machine
cycles during which the properties of the frequency sweep were varied. The standard
deviation of the measured values agrees with the uncertainty of a single chromaticity

0.10 0.05 0.00 0.05 0.10
Frequency change frev/frev in 

3.52

3.54

3.56

3.58

Tu
ne

 Q
x

Horizontal
Fit: Qx = 8.60(13)

0.10 0.05 0.00 0.05 0.10
Frequency change frev/frev in 

3.58

3.59

3.60

3.61

Tu
ne

 Q
y

Vertical
Fit: Qy = 3.64(13)

108

1010

Sp
ec

tra
l a

m
pl

itu
de

 in
 a

.u
.

Figure 6.8.: Tune as function of frequency change for a chromaticity measurement of a
cooled 970 MeV/c deuteron beam. The linear fit gives a frequency change
of ∆frev/frev = 0.297 76(4)‰, a chromaticity of ξx = −15.4(3), ξy = 6.5(3)
and a tune of Qx = 3.548 56(14), Qy = 3.594 53(14) at ∆frev/frev = 0.
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Figure 6.9.: Measured chromaticity (left) and tune (right) for frequency sweeps of
different polarity, amplitude (0.3 ‰ to 0.6 ‰) and duration (1 s to 2 s).
The average value and standard deviation is indicated.

measurement (figure  6.8 ), such that the reproducibility is confirmed.
By increasing the amplitude of the sweep by a factor of 2, the measurement un-
certainty can be halved. On the other hand, an increased sweep duration does not
improve the accuracy of the measurement.

6.4.2. Chromaticity compensation with sextupoles

As described in section  2.1.5 , sextupole magnets can be used to adjust and compensate
the chromaticity. This is demonstrated by comparing two measurements with and
without compensation.
Figure  6.10 shows a chromaticity measurement with all sextupole magnets switched
off. The observed tune change is dominantly linear and the determined chromaticity
is comparatively large with a value of ξx = −15.7(3) and ξy = 7.43(3).
For the second measurement the sextupole magnets “MXG”, which are located in the
apexes of the COSY ring, are energized with 20 % of the maximum current. It is
known from operational experience that this setting is suited to largely compensate
the chromaticity. As can be seen in figure  6.11 , the tune change is indeed smaller and
the chromaticity is reduced to ξx = −1.4(3) and ξy = −1.13(9). Due to the small linear
component, non-linear tune changes become apparent. These higher order terms are
refereed to as non-linear chromaticity [ Wie15 , p. 517].

To quantify the non-linearity of the measurement, a polynomial of cubic degree is
fitted to the data:

Q = Q0 + ξ ⋅
∆frev

ηfrev
+ ξ(2) ⋅ (

∆frev

ηfrev
)

2
+ ξ(3) ⋅ (

∆frev

ηfrev
)

3
(6.7)

with the tune Q0 for zero momentum deviation, the chromaticity ξ, and the second
and third order non-linear components ξ(2) and ξ(3) as fit parameters.
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6. Commissioning and Measurements at COSY

The optimized values of the non-linear fit parameters significantly depend on the de-
gree of the polynomial. To quantify this effect, the degree was varied from 3 to 6 and
the standard deviation of multiple fit results is used as systematic uncertainty. The
resulting parameters and their total uncertainties for both measurements are given in
table  6.2 .

By comparing the linear fit component ξ of both measurements, it is apparent that
the sextupole magnets indeed lead to a reduction of the chromaticity in both planes.
It can also be seen, that the measured tunes were affected by the sextupoles. This is
because the orbit was not corrected at the time of the measurement, such that the
beam passed the sextupole fields off-centre. Therefore, the sextupoles have a non-zero
focusing strength even for particles with vanishing momentum deviation, which leads
to a shift in the tune.
The quadratic contribution to the chromaticity ξ(2) are only slightly affected by the
sextupole fields. Only in the horizontal plane a difference larger than the uncertainty
was measured, which might be explained by higher order components of the magnetic
field. The cubic coefficients ξ(3) are all zero within the measurement uncertainty and
therefore negligible.

In summary, the chromaticity measurement and the concept of chromaticity compen-
sation with sextupole magnets were successfully demonstrated.

50



6.4. Chromaticity measurement and compensation

0.2 0.1 0.0 0.1 0.2
Frequency change frev/frev in 

3.52

3.54

3.56

3.58

Tu
ne

 Q
x

Horizontal

0.2 0.1 0.0 0.1 0.2
Frequency change frev/frev in 

3.58

3.59

3.60

3.61

Tu
ne

 Q
y

Vertical

108

109

1010

1011

Sp
ec

tra
l a

m
pl

itu
de

 in
 a

.u
.

Figure 6.10.: Tune as function of frequency change for a chromaticity measurement
with sextupole magnets switched off (uncompensated). The polynomial
fit (dashed line) is dominated by the linear component.
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Figure 6.11.: Tune as function of frequency change for a chromaticity measurement
with sextupole magnets switched on. The chromaticity is mostly com-
pensated causing the linear component in the polynomial fit (dashed
line) to vanish while higher order correlations become apparent.

Table 6.2.: Results for the cubic polynomial fits of the chromaticity measurements
with and without compensation by sextupole magnets. Besides tune Q0
and chromaticity ξ also the quadratic ξ(2) and cubic ξ(3) coefficients are
given according to equation  6.7 . The uncertainties in parentheses are the
combined statistical and systematic uncertainties.

Q0 ξ ξ(2) ξ(3)

uncompensated Hor. 3.549 10(3) −15.7(3) 2.1(10) × 103 2(4) × 106

Ver. 3.595 56(3) 7.43(3) −1.1(7) × 103 −1.6(2) × 106

compensated Hor. 3.561 44(3) −1.4(3) 5.6(10) × 103 −2(4) × 106

Ver. 3.587 34(3) −1.13(9) −1.8(13) × 103 −1.0(3) × 106

51





7. Conclusions

7.1. Summary

In the course of this thesis, a fast tune and chromaticity measurement system was
developed and successfully commissioned. For excitation of the betatron oscillations
via a stripline kicker, an adjustable, band limited noise source was implemented. The
noise excitation allows for a short measurement time minimizing the impact on beam
operation. It also enables continuous tracking of the tune independent of a changing
revolution frequency.
The betatron tune is determined from bunch-by-bunch position measurements with
capacitive pick-ups using the Libera Hadron beam position processor. Initiated upon
a dedicated trigger, the tune is measured within about 30 ms with a resolution of at
least 10−4. The typical uncertainty achieved with this method is in the order of 10−3,
which also includes the tune spread.
If tracked continuously, the tune can be recorded as a function of time for up to 3 s.
With the product of resolution in tune and time δq ⋅ δt = 1/frev ≈ 1 µs fixed by the
revolution frequency, a 10 ms time resolution allows for 10−4 units in tune.
To measure the chromaticity, the tune is tracked with an increased resolution of 10−5

units in tune over 1 to 2 s. At the same time, the beam’s momentum is varied with a
symmetric linear sweep of the revolution frequency via the RF cavity. Using a relative
change in frequency of ±0.3 ‰, the chromaticity is determined from linear fits to the
tune and frequency change with a typical uncertainty of about 0.3 to 0.5 units.
For regular use during beam operation and experiments, the developed methods were
integrated into the COSY control and data archiving system. Dedicated GUIs for
setting up the measurement procedures and displaying of the results were designed
and introduced to the operators during a training course.

Systematic parameter studies and measurements demonstrating the capabilities and
limits of the systems were presented. These show that BPMs at locations with a
large betatron function in the respective plane are to be used preferably for the mea-
surement. Furthermore, the dependence of the tune signal strength on the excitation
power was quantified and the influence of the beam intensity was examined.
Using the continuous tune tracking, it was shown how the crossing of a tune resonance
causes a significant beam loss. Additionally, the tune evolution during the complete
acceleration ramp of a deuteron beam was measured.
In the course of commissioning, the targeted adjustment of the betatron tune and
control of the chromaticity were demonstrated. Based on a measured tune response
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matrix, the tune is adjusted using quadrupole magnets. The chromaticity is com-
pensated by sextuple magnets in the arcs of the COSY ring. Thereby, non-linear
components in the chromatic behaviour where observed and quantified for a deuteron
beam at a momentum of p = 970 MeV/c.
The systematic uncertainty of the measurement method was analysed. Both tune and
chromaticity were found to be stable against variations in the measurement conditions
within the stated measurement uncertainty.

The developed tune and chromaticity measurement systems are not only used during
routine operation by the COSY operators, but also required for studies by the JEDI
collaboration. They provide two of the many parameters necessary for the successful
operation of an accelerator.

7.2. Outlook

The tune measurement is currently limited to bunched beams since it relies on beam
position measurements. For unbunched beams, the tune can in principle be recon-
structed from the unprocessed ADC data taken with the capacitive pick-ups. The
feasibility of this approach has already been proven in the course of test measure-
ments and can be implemented in the future.
The excitation of betatron oscillations using white noise turned out to be insufficient
for high beam momenta p ≫ 1 GeV/c. Therefore, an alternative excitation mode us-
ing a swept sinusoidal signal was implemented. While this allows to identify the tune
in the frequency spectrograms at the time the excitation frequency is resonant (see
appendix  C.4 ), an online evaluation and fitting is still to be realised.

In addition to the tune measurement, one can also think of determining the phase
advance at various BPMs by combining their measurements. While the noise excita-
tion has the benefit of allowing for a short measurement time, the information on the
betatron oscillation phase is blurred and difficult to obtain in an absolute manner.
For this purpose, a sinusoidal excitation, as used in a BTF measurement or by a PLL
tune tracker, is much better suited.
In the regular tune measurement, spurious signals are corrected by taking a back-
ground measurement without excitation. This approach is currently not used for
continuous tune tracking because the background signal is in general not represen-
tative for the whole measurement period, especially since the revolution frequency
might change. However, by pulsing the noise signal with a 50 % duty cycle, a repet-
itive background correction can be realized. As a side benefit, this will also reduce
the impact of long excitations on the particle beam.

The online fit of the chromaticity measurement considers only the linear component
as the primary objective of such a measurement. However, in some cases also the
non-linear components of higher orders might be of interest, especially if the linear
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chromaticity is close to zero as shown in section  6.4.2 . For this reason, an option to
quantify the non-linear chromaticity in the online measurement can be added to the
software.
Another possible extension is the measurement of the natural chromaticity, which does
not include the effect of sextupole field components. As described in section  3.3.1 ,
this can be realized by changing the momentum via the dipole field strength rather
than the revolution frequency. In contrast to the frequency, the information on the
magnetic field change is not contained in the measured data, but can be extracted
from the control system.

The HESR currently being build by the IKP for FAIR at GSI will also be equipped
with the Libera Hadron beam position processors. This allows to adopt the developed
tune and chromaticity measurement systems for use at the HESR as well. However,
since FAIR uses the Front-end Software Architecture (FESA), the control system in-
tegration of the developed algorithms will have to be re-implemented for this purpose.
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Appendix





A. Formula Derivations

A.1. Fourier transform of an amplitude modulated signal
of periodic pulses

The Fourier transform of a signal x(t) reads:

F{x(t)}(f) =
1

2π ∫ x(t)e−i2πft dt

Consider a periodic signal of delta pulses with period length T = 1/frev. The Fourier
transform is given by [ Jon18 , p. 241]:

x(t) =∑
n

δ(t − nT ) Ô⇒ F{x}(f) = 2πfrev∑
h

δ(f − hfrev)

The spectrum consists of harmonics of the fundamental frequency at hfrev.

Introducing an amplitude modulation by a harmonic oscillation of frequency fq and
amplitude 2a, the modulated signal x̃(t) can be expressed as:

x̃(t) = x(t) [1 + 2a cos(2πfqt)] = x(t) [1 + aei2πfqt + ae−i2πfqt]

Using the linearity of the Fourier transform and that

F{xe±i2πfqt}(f) =
1

2π ∫ x(t)e±i2πfqte−i2πft dt

=
1

2π ∫ x(t)e−i2π(f∓fq)t dt

= F{x}(f ∓ fq)

the Fourier transform of the modulated signal finally reads:

F{x̃}(f) = F{x}(f) + aF{x}(f + fq) + aF{x}(f − fq)

where each harmonic of the fundamental frequency is now accompanied by two side-
bands at hfrev ± fq. The magnitude of these sidebands scales with the modulation
amplitude.
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A. Formula Derivations

A.2. Momentum change for a B-field change at fixed
revolution frequency

The relativistic momentum is given by p = γmv with γ = 1/
√

1 − β2 and β = v/c. Its
derivative reads:

dp
dv = γm +mv

dγ
dv = γm +mvγ3β

dβ
dv = γm (1 + γ2β2) =mγ3 (A.1)

Therefore in linear approximation:

∆p
p

=
dp
dv

∆v
p

=mγ3 ∆v
γmv

= γ2 ∆v
v

(A.2)

At fixed revolution frequency f the change in the particle’s velocity v = fL depends
only on the change in the orbit circumference L.

dv = f dL =
v

L
dL ⇐⇒ ∆v

v
=

∆L
L

(A.3)

The change in circumference is determined by the change in the radius of curva-
ture R = p/(qB):

dL = 2π dR =
2π
q

(
dp
B

−
pdB
B2 ) = 2πR(

dp
p
−

dB
B

) ⇐⇒
∆L
L

=
2πR
L

±
αp

(
dp
p
−

dB
B

) (A.4)

With the momentum compaction factor αp = 1/γ2
tr [ Hin08 , p. 237]. Using this relation

and combining equations  A.2 to  A.4 one gets:

∆p
p

= γ2 ∆L
L

=
γ2

γ2
tr

(
∆p
p

−
∆B
B

) (A.5)

Finally, the relation between a change in the magnetic bending field ∆B and the
resulting momentum change ∆p for a constant frequency follows:

∆p
p

=
1

1 − γ2
tr/γ

2
∆B
B

(A.6)
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B. Implementation Details

B.1. Fgen file

Fgen files describe a property as a function of time by means of piecewise polynomials:

f(t) =∑
n

fn(t) ; fn(t) =

⎧⎪⎪
⎨
⎪⎪⎩

∑k pn,k (t − tn)
k if tn ≤ t < tn + dn

0 otherwise
; tn =

n−1
∑
i=0
di

where fn(t) is the nth polynomial (n = 1,2,3, . . .). Each polynomial is described by its
duration dn and N coefficients pn,k of order k = 0,1,2, . . . ,N . Since the polynomials
are consecutive, each one starts at the time tn according to the equation above where
d0 = 0 is the initial delay. At COSY, polynomials up to order N = 3 are used.
An exemplary fgen file for the revolution frequency is given in file  B.1 . In the
fgen file, each line represents a polynomial encoded as colon-separated values. The
first value is the polynomial’s duration dn in ms, and the following values are the
coefficients pn,k from k = 0 to 3 in units of raw/msk. The conversion from raw units
to the physical quantity depends on the device the fgen file is used for. For the RF,
the conversion factor is 1/5.726 665 Hz/raw.

A typical frequency ramp consists of injection (flat bottom), acceleration (ramp up),
time for experiments (flat top) and returning to the initial state (ramp down). For
a chromaticity measurement during an experiment, a frequency sweep was added to
the fgen file  B.1 . Therefore, the existing flat top polynomial was split (lines 11 and
15) and three linear segments were inserted (highlighted lines 12 to 14). The resulting
function is depicted in figure  B.1 .
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Figure B.1.: Frequency ramp according to file  B.1 . The inserted sweep is magnified.
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B. Implementation Details

File B.1.: freq.fgen

1 100:2241416.68:0.0:0.0:0.0
2 100:2241416.68:0.0:7.44602298:-0.000456312828
3 100:2315420.6:1475.51521:7.31312592:-0.00147264057
4 116:2534630.74:2893.96118:-0.39306158:-9.15271325e-05
5 116:2864898.33:2799.07613:-0.424903218:-7.06251239e-05
6 116:3183763.43:2697.64758:-0.449456704:-5.04615933e-05
7 116:3490563.89:2591.3366:-0.466982313:-3.15807519e-05
8 116:3784825.93:2481.72185:-0.477929778:-1.43828098e-05
9 100:4066252.19:2370.26153:-6.37820548:0.00180992911

10 100:4241306.22:1148.91831:-5.83510699:0.000603436279
11 6920:4298450.42:0.0:0.0:0.0
12 500:4298450.42:1.719380168000236:0.0:0.0
13 1000:4299310.110084:-1.719380168000236:0.0:0.0
14 500:4297590.729916:1.719380168000236:0.0:0.0
15 7080:4298450.42:0.0:0.0:0.0
16 100:4298450.42:0.0:-5.65407611:-0.000603436278
17 100:4241306.22:-1148.91831:-5.83522674:-0.00180992911
18 116:4066252.19:-2370.26153:-0.482934996:1.43828098e-05
19 116:3784825.93:-2481.72185:-0.477972415:3.15807518e-05
20 116:3490563.89:-2591.3366:-0.467017338:5.04615932e-05
21 116:3183763.43:-2697.64758:-0.449480761:7.06251239e-05
22 116:2864898.33:-2799.07613:-0.424913022:9.15271327e-05
23 100:2534630.74:-2893.96118:6.87133376:0.00147264057
24 100:2315420.6:-1475.51521:7.30912912:0.000456312829
25 100:2241416.68:0.0:0.0:0.0
26 end
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B. Implementation Details

B.2. Controls system GUI

Figure B.2.: Screenshot of the continuous tune GUI allowing to configure the mea-
surement parameters (upper left) and showing the frequency and beam
position (upper right) and the tune spectrograms (coloured plots).
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B. Implementation Details

Figure B.3.: Screenshot of the continuous tune GUI showing the tune fits over time.

Figure B.4.: Screenshot of the continuous tune GUI showing the fitted tunes and their
time evolution in the tune diagram.
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C. Measurements

C.1. Excitation and tune signal strength
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Figure C.1.: Amplitude A of the tune resonance as function of excitation power ap-
plied to the beam for different BPMs.
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C. Measurements

Table C.1.: Horizontal BPMs: Longitudinal coordinate s, betatron function βx and
fit parameters pi for the square-root fits in figure  C.1 .

BPM s in m βx in m p0 in a.u./
√

W p1 in a.u.
6 X 29.39 4.21 0.133(6) 0.129(27)
7 X 33.84 6.55 0.146(6) 0.181(28)
8 X 39.34 15.42 0.188(8) 0.269(38)
9 X 45.95 5.88 0.141(6) 0.145(29)
10 X 48.99 13.12 0.227(8) 0.362(40)
11 X 59.99 7.77 0.199(7) 0.267(33)
12 X 66.32 13.50 0.204(7) 0.269(34)
13 X 74.23 14.24 0.184(6) 0.227(27)
14 X 77.33 6.95 0.130(5) 0.145(25)
15 X 81.51 7.24 0.173(6) 0.236(28)
16 X 92.51 14.18 0.263(9) 0.434(44)
17 X 95.55 6.49 0.174(7) 0.186(31)
18 X 100.03 10.35 0.135(6) 0.175(28)
19 X 109.97 12.77 0.243(9) 0.350(45)
20 X 123.13 14.64 0.195(7) 0.328(34)
21 X 133.06 11.67 0.222(8) 0.348(40)
22 X 137.69 6.48 0.163(6) 0.240(33)
23 X 140.73 14.14 0.233(8) 0.316(36)
24 X 151.73 7.28 0.127(5) 0.132(23)
26 X 163.58 13.89 0.240(9) 0.378(43)
27 X 169.06 7.60 0.187(7) 0.269(33)

C 2



C. Measurements

Table C.2.: Vertical BPMs: Longitudinal coordinate s, betatron function βy and fit
parameters pi for the square-root fits in figure  C.1 .

BPM s in m βy in m p0 in a.u./
√

W p1 in a.u.
6 Y 29.55 7.27 0.742(11) 0.614(57)
7 Y 33.99 3.88 0.591(12) 0.534(59)
8 Y 39.48 16.63 1.037(20) 0.906(103)
9 Y 46.10 19.97 1.126(23) 1.002(115)
10 Y 49.16 9.07 0.725(15) 0.618(73)
11 Y 60.15 17.94 1.124(23) 0.951(113)
12 Y 66.48 9.90 0.814(17) 0.683(84)
13 Y 74.40 8.61 0.698(15) 0.608(76)
14 Y 77.49 18.32 1.054(21) 0.874(102)
15 Y 81.35 17.54 1.006(19) 0.841(96)
16 Y 92.35 9.28 0.803(16) 0.672(78)
17 Y 95.40 20.45 1.259(26) 1.038(133)
18 Y 100.18 13.39 1.020(21) 0.852(103)
19 Y 110.12 6.79 0.706(14) 0.627(71)
20 Y 123.28 7.12 0.783(18) 0.700(90)
21 Y 133.22 15.31 1.008(22) 0.917(111)
22 Y 137.85 20.45 1.231(27) 1.079(135)
23 Y 140.89 9.31 0.800(17) 0.677(85)
24 Y 151.89 17.51 1.091(21) 0.911(104)
26 Y 163.43 7.86 0.649(12) 0.544(59)
27 Y 169.22 18.75 1.119(22) 0.917(112)

C 3



C
.

M
ea

su
re

m
en

ts

0 25 50 75 100 125 150 175
s / m

0

5

10

15

20

25

30

Be
ta

 fu
nc

tio
n 

 / 
m

Optical functions
x

y

30

20

10

0

10

20

30

Di
sp

er
sio

n 
D

 / 
m

D

Figure C.2.: Optical functions of the COSY lattice: betatron function βx,y(s) and dispersion D(s).
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C. Measurements

C.2. Tune adjustment with quadrupole magnets

Quadrupoles MQT 1/4/5/7
Quadrupoles MQU 2/4/6
Quadrupoles MQU 1/3/5

Quadrupoles MQT 2/3/6/8
Dipoles

COSY

Figure C.3.: COSY lattice with quadrupole groups in the telescopes (MQT) and arcs
(MQU). Horizontally focusing quadrupole magnets are shown in blue
while vertically focusing ones are red.

Table C.3.: Tune measurements for different settings of the quadrupole magnets. For
each setting, the tune Q averaged over 4 BPMs is listed with the standard
deviation. Additionally, the measured tune spread σQ is given. The last
two measurements where carried out one day later with a slightly different
setting of dipole field and RF.

IMQU 1,3,5 IMQU 2,4,6 Qx Qy σQx σQy
Setting 1 24.90 A 34.10 A 3.5438(13) 3.6051(1) ±0.012 ±0.002
Setting 2 25.40 A 34.10 A 3.5291(21) 3.6406(1) ±0.017 ±0.002
Setting 3 24.90 A 34.60 A 3.5726(2) 3.5891(2) ±0.008 ±0.003
Original WP 24.90 A 34.10 A 3.5425(5) 3.6097(1) ±0.008 ±0.002
New WP 26.28 A 35.84 A 3.6111(3) 3.6523(1) ±0.008 ±0.001
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C. Measurements

C.3. Tune and chromaticity measurements of a 970 MeV/c
deuteron beam with and without beam cooling
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Figure C.4.: Chromaticity (top) and tune measurement (bottom) with pre-cooling:
ξx = −15.4(3), ξy = 6.5(3), Qx = 3.548 56(14), Qy = 3.594 53(14)
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Figure C.5.: Chromaticity (top) and tune measurement (bottom) without cooling:
ξx = −15.9(3), ξy = 6.8(3), Qx = 3.550 32(15), Qy = 3.594 92(14)
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C. Measurements

C.4. Swept sinusoidal excitation
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Figure C.6.: Frequency spectrograms recorded during excitation of the beam with a
swept sinusoidal signal. The excitation frequency is swept from 0.1 to 0.9
times frev = 1.56 MHz during 1 s as indicated by the dotted grey lines.
The tune manifests in the spectrograms by an increased spectral am-
plitude once it is crossed by the excitation frequency. The spectra on
the right where added during offline analysis by calculating the standard
deviation of the spectral amplitude for each row of pixels of the spectro-
gram, and dividing by the mean amplitude for this row. The spectra were
fitted with a Gaussian, yielding Qx = 3.635 ± 0.006 and Qy = 3.581 ± 0.005
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