000893117 001__ 893117
000893117 005__ 20240313103112.0
000893117 0247_ $$2doi$$a10.3389/fninf.2021.609147
000893117 0247_ $$2Handle$$a2128/27927
000893117 0247_ $$2pmid$$a34177505
000893117 0247_ $$2WOS$$aWOS:000664997900001
000893117 037__ $$aFZJ-2021-02574
000893117 082__ $$a610
000893117 1001_ $$0P:(DE-Juel1)171475$$aStapmanns, Jonas$$b0$$eCorresponding author$$ufzj
000893117 245__ $$aEvent-Based Update of Synapses in Voltage-Based Learning Rules
000893117 260__ $$aLausanne$$bFrontiers Research Foundation$$c2021
000893117 3367_ $$2DRIVER$$aarticle
000893117 3367_ $$2DataCite$$aOutput Types/Journal article
000893117 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1623316883_9002
000893117 3367_ $$2BibTeX$$aARTICLE
000893117 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893117 3367_ $$00$$2EndNote$$aJournal Article
000893117 520__ $$aDue to the point-like nature of neuronal spiking, efficient neural network simulators often employ event-based simulation schemes for synapses. Yet many types of synaptic plasticity rely on the membrane potential of the postsynaptic cell as a third factor in addition to pre- and postsynaptic spike times. In some learning rules membrane potentials not only influence synaptic weight changes at the time points of spike events but in a continuous manner. In these cases, synapses therefore require information on the full time course of membrane potentials to update their strength which a priori suggests a continuous update in a time-driven manner. The latter hinders scaling of simulations to realistic cortical network sizes and relevant time scales for learning. Here, we derive two efficient algorithms for archiving postsynaptic membrane potentials, both compatible with modern simulation engines based on event-based synapse updates. We theoretically contrast the two algorithms with a time-driven synapse update scheme to analyze advantages in terms of memory and computations. We further present a reference implementation in the spiking neural network simulator NEST for two prototypical voltage-based plasticity rules: the Clopath rule and the Urbanczik-Senn rule. For both rules, the two event-based algorithms significantly outperform the time-driven scheme. Depending on the amount of data to be stored for plasticity, which heavily differs between the rules, a strong performance increase can be achieved by compressing or sampling of information on membrane potentials. Our results on computational efficiency related to archiving of information provide guidelines for the design of learning rules in order to make them practically usable in large-scale networks.
000893117 536__ $$0G:(DE-HGF)POF4-523$$a523 - Neuromorphic Computing and Network Dynamics (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000893117 536__ $$0G:(DE-HGF)POF2-89574$$a89574 - Theory, modelling and simulation (POF2-89574)$$cPOF2-89574$$fPOF II T$$x1
000893117 536__ $$0G:(DE-Juel1)aca_20190115$$aAdvanced Computing Architectures (aca_20190115)$$caca_20190115$$fAdvanced Computing Architectures$$x2
000893117 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$x3
000893117 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x4
000893117 536__ $$0G:(DE-Juel1)HGF-SMHB-2014-2018$$aMSNN - Theory of multi-scale neuronal networks (HGF-SMHB-2014-2018)$$cHGF-SMHB-2014-2018$$fMSNN$$x5
000893117 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893117 7001_ $$0P:(DE-HGF)0$$aHahne, Jan$$b1
000893117 7001_ $$0P:(DE-Juel1)144806$$aHelias, Moritz$$b2$$ufzj
000893117 7001_ $$0P:(DE-HGF)0$$aBolten, Matthias$$b3
000893117 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b4$$ufzj
000893117 7001_ $$0P:(DE-Juel1)156459$$aDahmen, David$$b5$$ufzj
000893117 773__ $$0PERI:(DE-600)2452979-5$$a10.3389/fninf.2021.609147$$gVol. 15, p. 609147$$p609147$$tFrontiers in neuroinformatics$$v15$$x1662-5196$$y2021
000893117 8564_ $$uhttps://juser.fz-juelich.de/record/893117/files/fninf-15-609147.pdf$$yOpenAccess
000893117 909CO $$ooai:juser.fz-juelich.de:893117$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000893117 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171475$$aForschungszentrum Jülich$$b0$$kFZJ
000893117 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144806$$aForschungszentrum Jülich$$b2$$kFZJ
000893117 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b4$$kFZJ
000893117 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156459$$aForschungszentrum Jülich$$b5$$kFZJ
000893117 9130_ $$0G:(DE-HGF)POF2-89574$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vTheory, modelling and simulation$$x0
000893117 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000893117 9141_ $$y2021
000893117 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000893117 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000893117 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-05-04
000893117 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-05-04
000893117 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000893117 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893117 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROINFORM : 2019$$d2021-05-04
000893117 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04
000893117 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04
000893117 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-05-04
000893117 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000893117 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000893117 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000893117 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000893117 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-04
000893117 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000893117 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000893117 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-05-04
000893117 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000893117 920__ $$lyes
000893117 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000893117 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000893117 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000893117 9801_ $$aFullTexts
000893117 980__ $$ajournal
000893117 980__ $$aVDB
000893117 980__ $$aUNRESTRICTED
000893117 980__ $$aI:(DE-Juel1)INM-6-20090406
000893117 980__ $$aI:(DE-Juel1)IAS-6-20130828
000893117 980__ $$aI:(DE-Juel1)INM-10-20170113
000893117 981__ $$aI:(DE-Juel1)IAS-6-20130828