000893121 001__ 893121
000893121 005__ 20240712113232.0
000893121 0247_ $$2doi$$a10.1557/s43578-021-00250-1
000893121 0247_ $$2ISSN$$a0884-1616
000893121 0247_ $$2ISSN$$a0884-2914
000893121 0247_ $$2ISSN$$a2044-5326
000893121 0247_ $$2Handle$$a2128/29177
000893121 0247_ $$2WOS$$aWOS:000658355200003
000893121 037__ $$aFZJ-2021-02578
000893121 082__ $$a670
000893121 1001_ $$0P:(DE-HGF)0$$aPuppin, Lara G.$$b0
000893121 245__ $$aEffect of the oxidation state and morphology of SnOx-based electrocatalysts on the CO2 reduction reaction
000893121 260__ $$aCambridge [u.a.]$$bCambridge Univ. Press$$c2021
000893121 3367_ $$2DRIVER$$aarticle
000893121 3367_ $$2DataCite$$aOutput Types/Journal article
000893121 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637932959_26610
000893121 3367_ $$2BibTeX$$aARTICLE
000893121 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893121 3367_ $$00$$2EndNote$$aJournal Article
000893121 520__ $$aCO2 electrochemical reduction reaction (CO2RR) is an attractive strategy for closing the anthropogenic carbon cycle and storing intermittent renewable energy. Tin-based electrocatalysts exhibit remarkable properties for reducing CO2 into HCOOH. However, the effects of morphology and oxidation state of tin-based electrocatalysts on the performance of CO2 reduction have not been well-described. We evaluate the oxidation state and particle size of SnOx for CO2 reduction. SnOx was effective for converting CO2 into formic acid, reaching a maximum selectivity of 69%. The SnO exhibited high activity for CO2RR compared to SnO2 electrocatalysts. A pre-reduction step of a SnO2 electrocatalyst increased its CO2 reduction performance, confirming that Sn2+ is more active than Sn4+ sites. The microsized SnO2 is more effective for converting CO2 into formic acid than nanosized SnO2, likely due to the impurities of nanosized SnO2. We illuminated the role played by both SnOx particle size and oxidation state on CO2RR performance.
000893121 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000893121 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x1
000893121 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893121 7001_ $$0P:(DE-HGF)0$$ada Silva, Luís F.$$b1
000893121 7001_ $$0P:(DE-Juel1)145276$$aCarmo, Marcelo$$b2$$eCorresponding author$$ufzj
000893121 7001_ $$0P:(DE-HGF)0$$aVarela, Hamilton$$b3
000893121 7001_ $$0P:(DE-Juel1)184844$$aLopes, Osmando F.$$b4$$eCorresponding author
000893121 773__ $$0PERI:(DE-600)2015297-8$$a10.1557/s43578-021-00250-1$$p4240–4248$$tJournal of materials research$$v36$$x2044-5326$$y2021
000893121 8564_ $$uhttps://juser.fz-juelich.de/record/893121/files/Puppin2021_Article_EffectOfTheOxidationStateAndMo.pdf$$yOpenAccess
000893121 8767_ $$d2021-06-01$$eHybrid-OA$$jDEAL
000893121 909CO $$ooai:juser.fz-juelich.de:893121$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000893121 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145276$$aForschungszentrum Jülich$$b2$$kFZJ
000893121 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184844$$aForschungszentrum Jülich$$b4$$kFZJ
000893121 9130_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000893121 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000893121 9141_ $$y2021
000893121 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000893121 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-02-03
000893121 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000893121 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893121 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER RES : 2019$$d2021-02-03
000893121 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000893121 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000893121 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000893121 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG$$d2021-02-03$$wger
000893121 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000893121 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-02-03
000893121 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000893121 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-03$$wger
000893121 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000893121 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000893121 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000893121 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000893121 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
000893121 920__ $$lyes
000893121 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000893121 9801_ $$aFullTexts
000893121 980__ $$ajournal
000893121 980__ $$aVDB
000893121 980__ $$aUNRESTRICTED
000893121 980__ $$aI:(DE-Juel1)IEK-14-20191129
000893121 980__ $$aAPC
000893121 981__ $$aI:(DE-Juel1)IET-4-20191129