001     893121
005     20240712113232.0
024 7 _ |a 10.1557/s43578-021-00250-1
|2 doi
024 7 _ |a 0884-1616
|2 ISSN
024 7 _ |a 0884-2914
|2 ISSN
024 7 _ |a 2044-5326
|2 ISSN
024 7 _ |a 2128/29177
|2 Handle
024 7 _ |a WOS:000658355200003
|2 WOS
037 _ _ |a FZJ-2021-02578
082 _ _ |a 670
100 1 _ |a Puppin, Lara G.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Effect of the oxidation state and morphology of SnOx-based electrocatalysts on the CO2 reduction reaction
260 _ _ |a Cambridge [u.a.]
|c 2021
|b Cambridge Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1637932959_26610
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a CO2 electrochemical reduction reaction (CO2RR) is an attractive strategy for closing the anthropogenic carbon cycle and storing intermittent renewable energy. Tin-based electrocatalysts exhibit remarkable properties for reducing CO2 into HCOOH. However, the effects of morphology and oxidation state of tin-based electrocatalysts on the performance of CO2 reduction have not been well-described. We evaluate the oxidation state and particle size of SnOx for CO2 reduction. SnOx was effective for converting CO2 into formic acid, reaching a maximum selectivity of 69%. The SnO exhibited high activity for CO2RR compared to SnO2 electrocatalysts. A pre-reduction step of a SnO2 electrocatalyst increased its CO2 reduction performance, confirming that Sn2+ is more active than Sn4+ sites. The microsized SnO2 is more effective for converting CO2 into formic acid than nanosized SnO2, likely due to the impurities of nanosized SnO2. We illuminated the role played by both SnOx particle size and oxidation state on CO2RR performance.
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 0
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a da Silva, Luís F.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Carmo, Marcelo
|0 P:(DE-Juel1)145276
|b 2
|e Corresponding author
|u fzj
700 1 _ |a Varela, Hamilton
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lopes, Osmando F.
|0 P:(DE-Juel1)184844
|b 4
|e Corresponding author
773 _ _ |a 10.1557/s43578-021-00250-1
|0 PERI:(DE-600)2015297-8
|p 4240–4248
|t Journal of materials research
|v 36
|y 2021
|x 2044-5326
856 4 _ |u https://juser.fz-juelich.de/record/893121/files/Puppin2021_Article_EffectOfTheOxidationStateAndMo.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:893121
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145276
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)184844
913 0 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Electrolysis and Hydrogen
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-02-03
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER RES : 2019
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-03
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-03
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-03
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IET-4-20191129


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21