000893123 001__ 893123
000893123 005__ 20240708132924.0
000893123 0247_ $$2doi$$a10.1016/j.energy.2021.120660
000893123 0247_ $$2ISSN$$a0360-5442
000893123 0247_ $$2ISSN$$a1873-6785
000893123 0247_ $$2Handle$$a2128/28369
000893123 0247_ $$2WOS$$aWOS:000657662200002
000893123 037__ $$aFZJ-2021-02580
000893123 082__ $$a600
000893123 1001_ $$00000-0002-5809-4527$$aOrtiz-Imedio, Rafael$$b0
000893123 245__ $$aPower-to-Ships: Future electricity and hydrogen demands for shipping on the Atlantic coast of Europe in 2050
000893123 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000893123 3367_ $$2DRIVER$$aarticle
000893123 3367_ $$2DataCite$$aOutput Types/Journal article
000893123 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1627635112_3939
000893123 3367_ $$2BibTeX$$aARTICLE
000893123 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893123 3367_ $$00$$2EndNote$$aJournal Article
000893123 520__ $$aThe Atlantic coast of Europe has very high demand for maritime transport, with important commercial ports and tourist areas that emit significant amounts of greenhouse gas emissions. In an effort to address this, the impact of electric and H2 ships for freight and passenger transport along the Atlantic coast on the European energy system in 2050 is analyzed. An optimized energy supply model is applied, which envisions a cost-optimal infrastructure with 100% renewable energy across all of Europe, employing hydrogen as an energy vector. To achieve this target, a minimization of the total annual costs to supply electricity and hydrogen demands is carried out. The obtained results indicate that Ireland will play a key role as a hydrogen supplier as ship demand rises, increasing onshore and electrolyzer capacities, mainly due to comparable low-cost renewable electricity production. The preferred supply routes for Irish hydrogen will be pipelines through the United Kingdom and France to export energy to continental Europe. An increase in salt cavern storage capacity in the United Kingdom, central Europe and Spain is observed. H2 and electricity are shown to be essential for the deployment of more sustainable maritime transport and related activities on the European Atlantic coast.
000893123 536__ $$0G:(DE-HGF)POF4-1112$$a1112 - Societally Feasible Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x0
000893123 536__ $$0G:(DE-HGF)POF4-1111$$a1111 - Effective System Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x1
000893123 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893123 7001_ $$0P:(DE-Juel1)171337$$aCaglayan, Dilara Gulcin$$b1
000893123 7001_ $$0P:(DE-HGF)0$$aOrtiz, Alfredo$$b2
000893123 7001_ $$0P:(DE-Juel1)145221$$aHeinrichs, Heidi$$b3
000893123 7001_ $$0P:(DE-Juel1)156460$$aRobinius, Martin$$b4
000893123 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b5
000893123 7001_ $$00000-0002-3257-4821$$aOrtiz, Inmaculada$$b6$$eCorresponding author
000893123 773__ $$0PERI:(DE-600)2019804-8$$a10.1016/j.energy.2021.120660$$gVol. 228, p. 120660 -$$p120660 -$$tEnergy$$v228$$x0360-5442$$y2021
000893123 8564_ $$uhttps://juser.fz-juelich.de/record/893123/files/Ortiz-Imedio_Rafael.pdf$$yPublished on 2021-04-17. Available in OpenAccess from 2023-04-17.
000893123 909CO $$ooai:juser.fz-juelich.de:893123$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893123 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145221$$aForschungszentrum Jülich$$b3$$kFZJ
000893123 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b5$$kFZJ
000893123 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b5$$kRWTH
000893123 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1112$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x0
000893123 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1111$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x1
000893123 9141_ $$y2021
000893123 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000893123 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000893123 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-02-02
000893123 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02
000893123 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000893123 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGY : 2019$$d2021-02-02
000893123 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000893123 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000893123 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02
000893123 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bENERGY : 2019$$d2021-02-02
000893123 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000893123 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-02$$wger
000893123 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000893123 920__ $$lyes
000893123 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x0
000893123 9801_ $$aFullTexts
000893123 980__ $$ajournal
000893123 980__ $$aVDB
000893123 980__ $$aUNRESTRICTED
000893123 980__ $$aI:(DE-Juel1)IEK-3-20101013
000893123 981__ $$aI:(DE-Juel1)ICE-2-20101013