001     893165
005     20240712112948.0
024 7 _ |a 10.1021/acs.jpcc.1c02124
|2 doi
024 7 _ |a 1932-7447
|2 ISSN
024 7 _ |a 1932-7455
|2 ISSN
024 7 _ |a 2128/28175
|2 Handle
024 7 _ |a altmetric:107389156
|2 altmetric
024 7 _ |a WOS:000668350500017
|2 WOS
037 _ _ |a FZJ-2021-02603
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Ranninger, Johanna
|0 P:(DE-Juel1)174265
|b 0
|e Corresponding author
245 _ _ |a The Crucial Role of Water in the Stability and Electrocatalytic Activity of Pt Electrodes
260 _ _ |a Washington, DC
|c 2021
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1626183445_14726
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Understanding the role of water in the activity and stability of electrocatalysts is of great interest for different fundamental reactions. Investigations aiming to expand understanding of this are very challenging in aqueous electrolytes. By contrast, nonaqueous electrolytes with very well-defined water content can provide ideal conditions to better clarify the role of water in electrochemical reactions. In this paper, the dissolution and electrochemical behavior of Pt during potentiodynamic and potentiostatic measurements in methanol- and acetonitrile-based electrolytes with accurately controlled water content of <1 ppm, 100 ppm, 1000 ppm, 1%, and 10% are studied. In methanol-based electrolytes, we demonstrate the promoting effect of small amounts of water on the methanol oxidation reaction. We show the formation of surface oxide species with increasing water content in the Pt dissolution profile, which develops from a purely anodic to a predominantly cathodic dissolution, a known characteristic of aqueous electrolytes. The effect of water on the electrode stability is fundamentally different in acetonitrile-based systems: presumably, the strong adsorption of solvent molecules competes with the adsorption of water and thus inhibits the formation of an oxide layer at the surface even up to a water concentration of 1% as revealed by potentiodynamic measurements.
536 _ _ |a 123 - Chemische Energieträger (POF4-123)
|0 G:(DE-HGF)POF4-123
|c POF4-123
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Mayrhofer, Karl J. J.
|0 P:(DE-Juel1)168125
|b 1
700 1 _ |a Berkes, Balázs B.
|0 P:(DE-Juel1)171496
|b 2
773 _ _ |a 10.1021/acs.jpcc.1c02124
|g p. acs.jpcc.1c02124
|0 PERI:(DE-600)2256522-X
|n 24
|p 13254–13263
|t The journal of physical chemistry / C
|v 125
|y 2021
|x 1932-7455
856 4 _ |u https://juser.fz-juelich.de/record/893165/files/acs.jpcc.1c02124.pdf
|y Restricted
856 4 _ |y Published on 2021-06-09. Available in OpenAccess from 2022-06-09.
|u https://juser.fz-juelich.de/record/893165/files/The%20Crucial%20Role%20of%20Water%20on%20the%20Stability%20and%20Electrocatalytic%20Activity%20of%20Pt%20Electrodes.pdf
909 C O |o oai:juser.fz-juelich.de:893165
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174265
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)168125
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171496
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|x 0
913 0 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Electrolysis and Hydrogen
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM C : 2019
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
920 1 _ |0 I:(DE-Juel1)IEK-11-20140314
|k IEK-11
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-11-20140314
981 _ _ |a I:(DE-Juel1)IET-2-20140314


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21