000893166 001__ 893166
000893166 005__ 20240627202007.0
000893166 0247_ $$2doi$$a10.1016/j.molliq.2021.116690
000893166 0247_ $$2ISSN$$a0167-7322
000893166 0247_ $$2ISSN$$a1873-3166
000893166 0247_ $$2Handle$$a2128/32893
000893166 0247_ $$2WOS$$aWOS:000691312600020
000893166 037__ $$aFZJ-2021-02604
000893166 082__ $$a540
000893166 1001_ $$0P:(DE-HGF)0$$aKumar Pandey, Abhishek$$b0
000893166 245__ $$aEfficient delivery of hydrophobic drug, Cabazitaxel, using Nanodisc: A Nano sized free standing planar lipid bilayer
000893166 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2021
000893166 3367_ $$2DRIVER$$aarticle
000893166 3367_ $$2DataCite$$aOutput Types/Journal article
000893166 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1719492746_19429
000893166 3367_ $$2BibTeX$$aARTICLE
000893166 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893166 3367_ $$00$$2EndNote$$aJournal Article
000893166 520__ $$aSeveral new drug candidates have emerged as potential cancer therapeutics with the advent of drug discovery. The hydrophilic drug candidates have easily translated to chemotherapy via oral or intravenous administration methods, whereas efficient drug delivery vehicles for hydrophobic drugs have been an area of concern. This has resulted in an increasing interest in the nano-sized polymer and lipid-based drug delivery systems due to their enhanced distribution, bioavailability, and therapeutic value. In this study, the efficiency of membrane scaffold protein (MSP) embedded POPC (1-palmitoyl-2-oleoyl-glycero-3-phosphocholine) nanodiscs has been investigated as a hydrophobic drug delivery vehicle. Synthesized nanodiscs with an average diameter of 27.03 ± 1.5 nm were loaded with different hydrophobic drugs and evaluated for biocompatibility and drug release kinetics. The drug loading was found to be proportional to the hydrophobicity (LogP) of the drugs. Drug loaded nanodiscs showed sustained drug release till 24 h which was preceded by initial burst release. Drug delivery efficacy of cabazitaxel loaded nanodiscs (NDCBT) was tested by in vitro cytotoxicity assay, cell cycle arrest analysis, and spheroid growth inhibition study. We achieved significant enhancement of autophagy mediated cell death using NDCBTs when compared to free drug. Similarly, NDCBTs were able to induce approximately 20% higher toxicity in 3D spheroids model.
000893166 536__ $$0G:(DE-HGF)POF4-5352$$a5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000893166 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x1
000893166 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893166 7001_ $$00000-0002-6032-0730$$aPiplani, Niyati$$b1
000893166 7001_ $$0P:(DE-HGF)0$$aMondal, Titas$$b2
000893166 7001_ $$0P:(DE-Juel1)131971$$aKatranidis, Alexandros$$b3
000893166 7001_ $$0P:(DE-Juel1)128659$$aBhattacharya, Jaydeep$$b4$$eCorresponding author
000893166 773__ $$0PERI:(DE-600)1491496-7$$a10.1016/j.molliq.2021.116690$$gp. 116690 -$$p116690 -$$tJournal of molecular liquids$$v339$$x0167-7322$$y2021
000893166 8564_ $$uhttps://juser.fz-juelich.de/record/893166/files/Efficient%20delivery%20of%20hydrophobic%20drug%2C%20Cabazitaxel%2C%20using%20Nanodisc..-2.pdf$$yRestricted
000893166 8564_ $$uhttps://juser.fz-juelich.de/record/893166/files/revised%20manuscript.docx$$yOpenAccess
000893166 909CO $$ooai:juser.fz-juelich.de:893166$$pVDB$$popen_access$$popenaire$$pdnbdelivery$$pdriver
000893166 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131971$$aForschungszentrum Jülich$$b3$$kFZJ
000893166 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128659$$aForschungszentrum Jülich$$b4$$kFZJ
000893166 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5352$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000893166 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
000893166 9130_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000893166 9141_ $$y2021
000893166 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000893166 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000893166 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-03
000893166 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000893166 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ MOL LIQ : 2019$$d2021-02-03
000893166 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000893166 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000893166 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893166 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-03
000893166 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MOL LIQ : 2019$$d2021-02-03
000893166 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000893166 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-03$$wger
000893166 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000893166 920__ $$lyes
000893166 9201_ $$0I:(DE-Juel1)IBI-6-20200312$$kIBI-6$$lZelluläre Strukturbiologie$$x0
000893166 980__ $$ajournal
000893166 980__ $$aVDB
000893166 980__ $$aI:(DE-Juel1)IBI-6-20200312
000893166 980__ $$aUNRESTRICTED
000893166 9801_ $$aFullTexts
000893166 981__ $$aI:(DE-Juel1)ER-C-3-20170113