001     893166
005     20240627202007.0
024 7 _ |a 10.1016/j.molliq.2021.116690
|2 doi
024 7 _ |a 0167-7322
|2 ISSN
024 7 _ |a 1873-3166
|2 ISSN
024 7 _ |a 2128/32893
|2 Handle
024 7 _ |a WOS:000691312600020
|2 WOS
037 _ _ |a FZJ-2021-02604
082 _ _ |a 540
100 1 _ |a Kumar Pandey, Abhishek
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Efficient delivery of hydrophobic drug, Cabazitaxel, using Nanodisc: A Nano sized free standing planar lipid bilayer
260 _ _ |a New York, NY [u.a.]
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1719492746_19429
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Several new drug candidates have emerged as potential cancer therapeutics with the advent of drug discovery. The hydrophilic drug candidates have easily translated to chemotherapy via oral or intravenous administration methods, whereas efficient drug delivery vehicles for hydrophobic drugs have been an area of concern. This has resulted in an increasing interest in the nano-sized polymer and lipid-based drug delivery systems due to their enhanced distribution, bioavailability, and therapeutic value. In this study, the efficiency of membrane scaffold protein (MSP) embedded POPC (1-palmitoyl-2-oleoyl-glycero-3-phosphocholine) nanodiscs has been investigated as a hydrophobic drug delivery vehicle. Synthesized nanodiscs with an average diameter of 27.03 ± 1.5 nm were loaded with different hydrophobic drugs and evaluated for biocompatibility and drug release kinetics. The drug loading was found to be proportional to the hydrophobicity (LogP) of the drugs. Drug loaded nanodiscs showed sustained drug release till 24 h which was preceded by initial burst release. Drug delivery efficacy of cabazitaxel loaded nanodiscs (NDCBT) was tested by in vitro cytotoxicity assay, cell cycle arrest analysis, and spheroid growth inhibition study. We achieved significant enhancement of autophagy mediated cell death using NDCBTs when compared to free drug. Similarly, NDCBTs were able to induce approximately 20% higher toxicity in 3D spheroids model.
536 _ _ |a 5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535)
|0 G:(DE-HGF)POF4-5352
|c POF4-535
|f POF IV
|x 0
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Piplani, Niyati
|0 0000-0002-6032-0730
|b 1
700 1 _ |a Mondal, Titas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Katranidis, Alexandros
|0 P:(DE-Juel1)131971
|b 3
700 1 _ |a Bhattacharya, Jaydeep
|0 P:(DE-Juel1)128659
|b 4
|e Corresponding author
773 _ _ |a 10.1016/j.molliq.2021.116690
|g p. 116690 -
|0 PERI:(DE-600)1491496-7
|p 116690 -
|t Journal of molecular liquids
|v 339
|y 2021
|x 0167-7322
856 4 _ |u https://juser.fz-juelich.de/record/893166/files/Efficient%20delivery%20of%20hydrophobic%20drug%2C%20Cabazitaxel%2C%20using%20Nanodisc..-2.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/893166/files/revised%20manuscript.docx
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:893166
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131971
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128659
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5352
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 1
913 0 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Functional Macromolecules and Complexes
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-03
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J MOL LIQ : 2019
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MOL LIQ : 2019
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-03
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-6-20200312
|k IBI-6
|l Zelluläre Strukturbiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBI-6-20200312
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)ER-C-3-20170113


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21