000893171 001__ 893171 000893171 005__ 20240712113024.0 000893171 0247_ $$2doi$$a10.1103/PhysRevLett.126.224501 000893171 0247_ $$2ISSN$$a0031-9007 000893171 0247_ $$2ISSN$$a1079-7114 000893171 0247_ $$2ISSN$$a1092-0145 000893171 0247_ $$2Handle$$a2128/27946 000893171 0247_ $$2altmetric$$aaltmetric:106922147 000893171 0247_ $$2pmid$$a34152187 000893171 0247_ $$2WOS$$aWOS:000657182100002 000893171 037__ $$aFZJ-2021-02606 000893171 041__ $$aEnglish 000893171 082__ $$a530 000893171 1001_ $$0P:(DE-Juel1)186666$$aHubert, Maxime$$b0$$eCorresponding author$$ufzj 000893171 245__ $$aScallop Theorem and Swimming at the Mesoscale 000893171 260__ $$aCollege Park, Md.$$bAPS$$c2021 000893171 3367_ $$2DRIVER$$aarticle 000893171 3367_ $$2DataCite$$aOutput Types/Journal article 000893171 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1623679267_29795 000893171 3367_ $$2BibTeX$$aARTICLE 000893171 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000893171 3367_ $$00$$2EndNote$$aJournal Article 000893171 520__ $$aBy comparing theoretical modeling, simulations, and experiments, we show that there exists aswimming regime at low Reynolds numbers solely driven by the inertia of the swimmer itself. This isdemonstrated by considering a dumbbell with an asymmetry in coasting time in its two spheres. Despitedeforming in a reciprocal fashion, the dumbbell swims by generating a nonreciprocal Stokesian flow, whicharises from the asymmetry in coasting times. This asymmetry acts as a second degree of freedom, whichallows the scallop theorem to be fulfilled at the mesoscopic scale. 000893171 536__ $$0G:(DE-HGF)POF4-121$$a121 - Photovoltaik und Windenergie (POF4-121)$$cPOF4-121$$fPOF IV$$x0 000893171 536__ $$0G:(GEPRIS)366087427$$aDFG project 366087427 - Magnetokapillare Mikroroboter zum Einfangen und zum Transport von Objekten an Flüssiggrenzflächen $$c366087427$$x1 000893171 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000893171 7001_ $$0P:(DE-Juel1)186665$$aTrosman, O.$$b1$$ufzj 000893171 7001_ $$00000-0001-7302-0019$$aCollard, Y.$$b2 000893171 7001_ $$0P:(DE-Juel1)169463$$aSukhov, A.$$b3 000893171 7001_ $$0P:(DE-Juel1)167472$$aHarting, J.$$b4 000893171 7001_ $$00000-0002-1824-2011$$aVandewalle, N.$$b5 000893171 7001_ $$0P:(DE-Juel1)186752$$aSmith, A.-S.$$b6$$ufzj 000893171 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.126.224501$$gVol. 126, no. 22, p. 224501$$n22$$p224501$$tPhysical review letters$$v126$$x1079-7114$$y2021 000893171 8564_ $$uhttps://juser.fz-juelich.de/record/893171/files/Scallop%20Theorem%20and%20Swimming%20at%20the%20Mesoscale.pdf$$yOpenAccess 000893171 909CO $$ooai:juser.fz-juelich.de:893171$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000893171 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186666$$aForschungszentrum Jülich$$b0$$kFZJ 000893171 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186665$$aForschungszentrum Jülich$$b1$$kFZJ 000893171 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169463$$aForschungszentrum Jülich$$b3$$kFZJ 000893171 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167472$$aForschungszentrum Jülich$$b4$$kFZJ 000893171 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186752$$aForschungszentrum Jülich$$b6$$kFZJ 000893171 9130_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0 000893171 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0 000893171 9141_ $$y2021 000893171 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02 000893171 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02 000893171 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-02-02 000893171 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02 000893171 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement 000893171 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02 000893171 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02 000893171 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02 000893171 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02 000893171 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000893171 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2021-02-02 000893171 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2019$$d2021-02-02 000893171 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02 000893171 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2019$$d2021-02-02 000893171 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-02$$wger 000893171 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02 000893171 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0 000893171 9801_ $$aFullTexts 000893171 980__ $$ajournal 000893171 980__ $$aVDB 000893171 980__ $$aUNRESTRICTED 000893171 980__ $$aI:(DE-Juel1)IEK-11-20140314 000893171 981__ $$aI:(DE-Juel1)IET-2-20140314