000893186 001__ 893186 000893186 005__ 20240711085559.0 000893186 0247_ $$2doi$$a10.3389/fenrg.2021.689416 000893186 0247_ $$2Handle$$a2128/27983 000893186 0247_ $$2altmetric$$aaltmetric:106260775 000893186 0247_ $$2WOS$$aWOS:000663744700001 000893186 037__ $$aFZJ-2021-02610 000893186 082__ $$a333.7 000893186 1001_ $$0P:(DE-Juel1)178009$$aDück, Gerald$$b0$$eCorresponding author$$ufzj 000893186 245__ $$aCo-Sintering Study of Na$_{0.67}$[Ni$_{0.1}$Fe$_{0.1}$Mn$_{0.8}$]O$_{2}$ and NaSICON Electrolyte–Paving the way to High Energy Density All-Solid-State Batteries 000893186 260__ $$aLausanne$$bFrontiers Media$$c2021 000893186 3367_ $$2DRIVER$$aarticle 000893186 3367_ $$2DataCite$$aOutput Types/Journal article 000893186 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1625148085_30219 000893186 3367_ $$2BibTeX$$aARTICLE 000893186 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000893186 3367_ $$00$$2EndNote$$aJournal Article 000893186 520__ $$aSodium is a promising candidate for stationary storage applications, especially when the demand for lithium-ion batteries increases due to electromobility applications. Even though its energy density is lower, Na-ion technology is estimated to lead to a cost reduction of 30% compared to Li-ion technology. To improve safety as well as energy density, Na-based all-solid-state-batteries featuring solid electrolytes such as beta-alumina and sodium superionic conductors and cathode materials such as Na3V2(PO4)3 and NaxCoO2 have been developed over the past years. However, the biggest challenge are mixed cathodes with highly conductive interfaces, especially when co-sintering the materials. For example, a promising sodium superionic conductor type Na3Zr2Si2PO12 electrolyte sinters at 1,250°C, whereas the corresponding Na3V2PO12 cathode decomposes at temperatures higher than 900°C, posing a bottleneck. Thus in this paper, we synthesized Na0.62 [Ni0.10Fe0.10Mn0.80]O2 as cathode material for all-solid-state sodium-ion batteries via a relatively cheap and easy solution-assisted solid state reaction processing route. The thermal investigations of the pure cathode material found no degradation up to 1,260°C, making it a perfect match for Na3.4Zr2Si2.4P0.6O12 electrolyte. In our aim to produce a co-sintered mixed cathode, electron microscopy investigation showed a highly dense microstructure and the elemental mapping performed via energy dispersive X-ray spectroscopy and secondary ion mass spectrometry confirm that Na3.4Zr2Si2.4P0.6O12 and Na0.62 [Ni0.10Fe0.10Mn0.80]O2 do not react during sintering. However, the active cathode material forms a sodium rich and a sodium deficient phase which needs further investigation to understand the origin and its impact on the electrochemical performance. 000893186 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0 000893186 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x1 000893186 588__ $$aDataset connected to DataCite 000893186 7001_ $$0P:(DE-Juel1)165865$$aNaqash, Sahir$$b1$$ufzj 000893186 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b2$$ufzj 000893186 7001_ $$0P:(DE-Juel1)133840$$aBreuer, Uwe$$b3$$ufzj 000893186 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b4$$ufzj 000893186 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b5$$ufzj 000893186 773__ $$0PERI:(DE-600)2733788-1$$a10.3389/fenrg.2021.689416$$gVol. 9, p. 689416$$p689416$$tFrontiers in energy research$$v9$$x2296-598X$$y2021 000893186 8564_ $$uhttps://juser.fz-juelich.de/record/893186/files/fenrg-09-689416.pdf$$yOpenAccess 000893186 8767_ $$82021-0390594-4$$d2021-06-15$$eAPC$$jDeposit$$lDeposit: Frontiers$$z$2,116.50 000893186 909CO $$ooai:juser.fz-juelich.de:893186$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire 000893186 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178009$$aForschungszentrum Jülich$$b0$$kFZJ 000893186 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165865$$aForschungszentrum Jülich$$b1$$kFZJ 000893186 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145623$$aForschungszentrum Jülich$$b2$$kFZJ 000893186 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133840$$aForschungszentrum Jülich$$b3$$kFZJ 000893186 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b4$$kFZJ 000893186 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b5$$kFZJ 000893186 9130_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0 000893186 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0 000893186 9141_ $$y2021 000893186 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29 000893186 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29 000893186 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-29 000893186 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000893186 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT ENERGY RES : 2019$$d2021-01-29 000893186 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-29 000893186 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-29 000893186 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29 000893186 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-29 000893186 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29 000893186 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29 000893186 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000893186 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-01-29 000893186 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-29 000893186 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29 000893186 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29 000893186 920__ $$lyes 000893186 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0 000893186 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1 000893186 9801_ $$aAPC 000893186 9801_ $$aFullTexts 000893186 980__ $$ajournal 000893186 980__ $$aVDB 000893186 980__ $$aUNRESTRICTED 000893186 980__ $$aI:(DE-Juel1)IEK-1-20101013 000893186 980__ $$aI:(DE-82)080011_20140620 000893186 980__ $$aAPC 000893186 981__ $$aI:(DE-Juel1)IMD-2-20101013