000893188 001__ 893188
000893188 005__ 20240712100826.0
000893188 0247_ $$2doi$$a10.5194/acp-21-8393-2021
000893188 0247_ $$2ISSN$$a1680-7316
000893188 0247_ $$2ISSN$$a1680-7324
000893188 0247_ $$2Handle$$a2128/27984
000893188 0247_ $$2altmetric$$aaltmetric:106896289
000893188 0247_ $$2WOS$$aWOS:000659136400002
000893188 037__ $$aFZJ-2021-02612
000893188 082__ $$a550
000893188 1001_ $$0P:(DE-Juel1)129141$$aPloeger, Felix$$b0$$eCorresponding author
000893188 245__ $$aThe stratospheric Brewer–Dobson circulation inferred from age of air in the ERA5 reanalysis
000893188 260__ $$aKatlenburg-Lindau$$bEGU$$c2021
000893188 3367_ $$2DRIVER$$aarticle
000893188 3367_ $$2DataCite$$aOutput Types/Journal article
000893188 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1625148575_4492
000893188 3367_ $$2BibTeX$$aARTICLE
000893188 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893188 3367_ $$00$$2EndNote$$aJournal Article
000893188 520__ $$aThis paper investigates the global stratospheric Brewer–Dobson circulation (BDC) in the ERA5 meteorological reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF). The analysis is based on simulations of stratospheric mean age of air, including the full age spectrum, with the Lagrangian transport model CLaMS (Chemical Lagrangian Model of the Stratosphere), driven by reanalysis winds and total diabatic heating rates. ERA5-based results are compared to results based on the preceding ERA-Interim reanalysis. Our results show a significantly slower BDC for ERA5 than for ERA-Interim, manifesting in weaker diabatic heating rates and higher age of air. In the tropical lower stratosphere, heating rates are 30 %–40 % weaker in ERA5, likely correcting a bias in ERA-Interim. At 20 km and in the Northern Hemisphere (NH) stratosphere, ERA5 age values are around the upper margin of the uncertainty range from historical tracer observations, indicating a somewhat slow–biased BDC. The age trend in ERA5 over the 1989–2018 period is negative throughout the stratosphere, as climate models predict in response to global warming. However, the age decrease is not linear but steplike, potentially caused by multi-annual variability or changes in the observations included in the assimilation. During the 2002–2012 period, the ERA5 age shows a similar hemispheric dipole trend pattern as ERA-Interim, with age increasing in the NH and decreasing in the Southern Hemisphere (SH). Shifts in the age spectrum peak and residual circulation transit times indicate that reanalysis differences in age are likely caused by differences in the residual circulation. In particular, the shallow BDC branch accelerates in both reanalyses, whereas the deep branch accelerates in ERA5 and decelerates in ERA-Interim.
000893188 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000893188 536__ $$0G:(GEPRIS)429838442$$aDFG project 429838442 - Wie wirken sich natürliche Variabilität und anthropogen bedingte Änderungen auf die stratosphärische Brewer-Dobson Zirkulation und den Ozonfluss in die Troposphäre aus? $$c429838442$$x1
000893188 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893188 7001_ $$0P:(DE-Juel1)169614$$aDiallo, Mohamadou$$b1
000893188 7001_ $$0P:(DE-Juel1)171935$$aCharlesworth, Edward$$b2
000893188 7001_ $$0P:(DE-Juel1)129130$$aKonopka, Paul$$b3$$ufzj
000893188 7001_ $$00000-0002-3756-7794$$aLegras, Bernard$$b4
000893188 7001_ $$0P:(DE-Juel1)177681$$aLaube, Johannes C.$$b5$$ufzj
000893188 7001_ $$0P:(DE-Juel1)129122$$aGrooß, Jens-Uwe$$b6
000893188 7001_ $$0P:(DE-Juel1)129123$$aGünther, Gebhard$$b7
000893188 7001_ $$00000-0003-0557-3935$$aEngel, Andreas$$b8
000893188 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b9
000893188 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-21-8393-2021$$gVol. 21, no. 11, p. 8393 - 8412$$n11$$p8393 - 8412$$tAtmospheric chemistry and physics$$v21$$x1680-7324$$y2021
000893188 8564_ $$uhttps://juser.fz-juelich.de/record/893188/files/acp-21-8393-2021.pdf$$yOpenAccess
000893188 909CO $$ooai:juser.fz-juelich.de:893188$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000893188 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich$$b0$$kFZJ
000893188 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169614$$aForschungszentrum Jülich$$b1$$kFZJ
000893188 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171935$$aForschungszentrum Jülich$$b2$$kFZJ
000893188 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129130$$aForschungszentrum Jülich$$b3$$kFZJ
000893188 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177681$$aForschungszentrum Jülich$$b5$$kFZJ
000893188 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129122$$aForschungszentrum Jülich$$b6$$kFZJ
000893188 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129123$$aForschungszentrum Jülich$$b7$$kFZJ
000893188 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b9$$kFZJ
000893188 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000893188 9130_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000893188 9141_ $$y2021
000893188 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000893188 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000893188 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000893188 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000893188 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000893188 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000893188 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000893188 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000893188 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000893188 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000893188 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893188 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000893188 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000893188 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000893188 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000893188 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000893188 920__ $$lyes
000893188 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000893188 9801_ $$aFullTexts
000893188 980__ $$ajournal
000893188 980__ $$aVDB
000893188 980__ $$aUNRESTRICTED
000893188 980__ $$aI:(DE-Juel1)IEK-7-20101013
000893188 981__ $$aI:(DE-Juel1)ICE-4-20101013