000893189 001__ 893189
000893189 005__ 20240712100907.0
000893189 0247_ $$2doi$$a10.5194/acp-21-535-2021
000893189 0247_ $$2ISSN$$a1680-7316
000893189 0247_ $$2ISSN$$a1680-7324
000893189 0247_ $$2Handle$$a2128/27991
000893189 0247_ $$2altmetric$$aaltmetric:97750031
000893189 0247_ $$2WOS$$aWOS:000652555600001
000893189 037__ $$aFZJ-2021-02613
000893189 082__ $$a550
000893189 1001_ $$0P:(DE-Juel1)161426$$aKloss, Corinna$$b0$$eCorresponding author
000893189 245__ $$aStratospheric aerosol layer perturbation caused by the 2019 Raikoke and Ulawun eruptions and their radiative forcing
000893189 260__ $$aKatlenburg-Lindau$$bEGU$$c2021
000893189 3367_ $$2DRIVER$$aarticle
000893189 3367_ $$2DataCite$$aOutput Types/Journal article
000893189 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1625211784_9135
000893189 3367_ $$2BibTeX$$aARTICLE
000893189 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893189 3367_ $$00$$2EndNote$$aJournal Article
000893189 520__ $$aIn June 2019 a stratospheric eruption occurred at Raikoke (48∘ N, 153∘ E). Satellite observations show the injection of ash and SO2 into the lower stratosphere and an early entrainment of the plume into a cyclone. Following the Raikoke eruption, stratospheric aerosol optical depth (sAOD) values increased in the whole Northern Hemisphere and tropics and remained enhanced for more than 1 year, with peak values at 0.040 (short-wavelength, high northern latitudes) to 0.025 (short-wavelength, Northern Hemisphere average). Discrepancies between observations and global model simulations indicate that ash may have influenced the extent and evolution of the sAOD. Top of the atmosphere radiative forcings are estimated at values between −0.3 and −0.4Wm−2 (clear-sky) and of −0.1 to −0.2Wm−2 (all-sky), comparable to what was estimated for the Sarychev eruption in 2009. Almost simultaneously two significantly smaller stratospheric eruptions occurred at Ulawun (5∘ S, 151∘ E) in June and August. Aerosol enhancements from the Ulawun eruptions mainly had an impact on the tropics and Southern Hemisphere. The Ulawun plume circled the Earth within 1 month in the tropics. Peak shorter-wavelength sAOD values at 0.01 are found in the tropics following the Ulawun eruptions and a radiative forcing not exceeding −0.15 (clear-sky) and −0.05 (all-sky). Compared to the Canadian fires (2017), Ambae eruption (2018), Ulawun (2019) and the Australian fires (2019/2020), the highest sAOD and radiative forcing values are found for the Raikoke eruption.
000893189 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000893189 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893189 7001_ $$00000-0003-3169-1636$$aBerthet, Gwenaël$$b1
000893189 7001_ $$00000-0001-7440-2350$$aSellitto, Pasquale$$b2
000893189 7001_ $$0P:(DE-Juel1)129141$$aPloeger, Felix$$b3$$eCollaboration author
000893189 7001_ $$00000-0001-8362-6516$$aTaha, Ghassan$$b4
000893189 7001_ $$0P:(DE-HGF)0$$aTidiga, Mariam$$b5
000893189 7001_ $$0P:(DE-HGF)0$$aEremenko, Maxim$$b6
000893189 7001_ $$0P:(DE-HGF)0$$aBossolasco, Adriana$$b7
000893189 7001_ $$00000-0003-3527-1399$$aJégou, Fabrice$$b8
000893189 7001_ $$0P:(DE-HGF)0$$aRenard, Jean-Baptiste$$b9
000893189 7001_ $$00000-0002-3756-7794$$aLegras, Bernard$$b10
000893189 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-21-535-2021$$gVol. 21, no. 1, p. 535 - 560$$n1$$p535 - 560$$tAtmospheric chemistry and physics$$v21$$x1680-7324$$y2021
000893189 8564_ $$uhttps://juser.fz-juelich.de/record/893189/files/acp-21-535-2021.pdf$$yOpenAccess
000893189 909CO $$ooai:juser.fz-juelich.de:893189$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000893189 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich$$b3$$kFZJ
000893189 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000893189 9130_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000893189 9141_ $$y2021
000893189 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000893189 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000893189 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000893189 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000893189 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000893189 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000893189 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000893189 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000893189 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000893189 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000893189 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893189 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000893189 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000893189 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000893189 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000893189 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000893189 920__ $$lyes
000893189 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000893189 9801_ $$aFullTexts
000893189 980__ $$ajournal
000893189 980__ $$aVDB
000893189 980__ $$aUNRESTRICTED
000893189 980__ $$aI:(DE-Juel1)IEK-7-20101013
000893189 981__ $$aI:(DE-Juel1)ICE-4-20101013