000893191 001__ 893191
000893191 005__ 20240712100826.0
000893191 0247_ $$2doi$$a10.5194/acp-19-8947-2019
000893191 0247_ $$2ISSN$$a1680-7316
000893191 0247_ $$2ISSN$$a1680-7324
000893191 0247_ $$2Handle$$a2128/27985
000893191 0247_ $$2altmetric$$aaltmetric:63463866
000893191 0247_ $$2WOS$$aWOS:000475370200006
000893191 037__ $$aFZJ-2021-02615
000893191 082__ $$a550
000893191 1001_ $$0P:(DE-HGF)0$$aNützel, Matthias$$b0$$eCorresponding author
000893191 245__ $$aQuantification of water vapour transport from the Asian monsoon to the stratosphere
000893191 260__ $$aKatlenburg-Lindau$$bEGU$$c2019
000893191 3367_ $$2DRIVER$$aarticle
000893191 3367_ $$2DataCite$$aOutput Types/Journal article
000893191 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1625148718_4492
000893191 3367_ $$2BibTeX$$aARTICLE
000893191 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893191 3367_ $$00$$2EndNote$$aJournal Article
000893191 520__ $$aNumerous studies have presented evidence that the Asian summer monsoon anticyclone substantially influences the distribution of trace gases – including water vapour – in the upper troposphere and lower stratosphere (e.g. Santee et al., 2017). Stratospheric water vapour in turn strongly affects surface climate (see e.g. Solomon et al., 2010). Here, we analyse the characteristics of water vapour transport from the upper troposphere in the Asian monsoon region to the stratosphere employing a multiannual simulation with the chemistry-transport model CLaMS (Chemical Lagrangian Model of the Stratosphere). This simulation is driven by meteorological data from ERA-Interim and features a water vapour tagging that allows us to assess the contributions of different upper tropospheric source regions to the stratospheric water vapour budget. Our results complement the analysis of air mass transport through the Asian monsoon anticyclone by Ploeger et al. (2017). The results show that the transport characteristics for water vapour are mainly determined by the bulk mass transport from the Asian monsoon region. Further, we find that, although the relative contribution from the Asian monsoon region to water vapour in the deep tropics is rather small (average peak contribution of 14 % at 450 K), the Asian monsoon region is very efficient in transporting water vapour to this region (when judged according to its comparatively small spatial extent). With respect to the Northern Hemisphere extratropics, the Asian monsoon region is much more impactful and efficient regarding water vapour transport than e.g. the North American monsoon region (averaged maximum contributions at 400 K of 29 % versus 6.4 %).
000893191 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000893191 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893191 7001_ $$0P:(DE-Juel1)173992$$aPodglajen, Aurélien$$b1
000893191 7001_ $$0P:(DE-HGF)0$$aGarny, Hella$$b2
000893191 7001_ $$0P:(DE-Juel1)129141$$aPloeger, Felix$$b3$$ufzj
000893191 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-19-8947-2019$$gVol. 19, no. 13, p. 8947 - 8966$$n13$$p8947 - 8966$$tAtmospheric chemistry and physics$$v19$$x1680-7324$$y2019
000893191 8564_ $$uhttps://juser.fz-juelich.de/record/893191/files/acp-19-8947-2019.pdf$$yOpenAccess
000893191 909CO $$ooai:juser.fz-juelich.de:893191$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000893191 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich$$b3$$kFZJ
000893191 9130_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000893191 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000893191 9141_ $$y2021
000893191 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000893191 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000893191 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000893191 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000893191 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000893191 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000893191 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000893191 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000893191 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000893191 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000893191 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893191 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000893191 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000893191 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2019$$d2021-02-02
000893191 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000893191 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000893191 920__ $$lyes
000893191 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000893191 9801_ $$aFullTexts
000893191 980__ $$ajournal
000893191 980__ $$aVDB
000893191 980__ $$aUNRESTRICTED
000893191 980__ $$aI:(DE-Juel1)IEK-7-20101013
000893191 981__ $$aI:(DE-Juel1)ICE-4-20101013