000893205 001__ 893205
000893205 005__ 20230111074309.0
000893205 0247_ $$2doi$$a10.1021/acs.jcim.1c00152
000893205 0247_ $$2ISSN$$a0095-2338
000893205 0247_ $$2ISSN$$a1549-9596
000893205 0247_ $$2ISSN$$a1520-5142
000893205 0247_ $$2ISSN$$a(BIS
000893205 0247_ $$2ISSN$$a44.2004)
000893205 0247_ $$2ISSN$$a1549-960X
000893205 0247_ $$2Handle$$a2128/27975
000893205 0247_ $$2altmetric$$aaltmetric:106323745
000893205 0247_ $$2pmid$$a33949194
000893205 0247_ $$2WOS$$aWOS:000656118800025
000893205 037__ $$aFZJ-2021-02622
000893205 082__ $$a540
000893205 1001_ $$0P:(DE-Juel1)176299$$aNutschel, Christina$$b0$$ufzj
000893205 245__ $$aPromiscuous Esterases Counterintuitively Are Less Flexible than Specific Ones
000893205 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2021
000893205 3367_ $$2DRIVER$$aarticle
000893205 3367_ $$2DataCite$$aOutput Types/Journal article
000893205 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1623932764_7293
000893205 3367_ $$2BibTeX$$aARTICLE
000893205 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893205 3367_ $$00$$2EndNote$$aJournal Article
000893205 520__ $$aUnderstanding mechanisms of promiscuity is increasingly important from a fundamental and application point of view. As to enzyme structural dynamics, more promiscuous enzymes generally have been recognized to also be more flexible. However, examples for the opposite received much less attention. Here, we exploit comprehensive experimental information on the substrate promiscuity of 147 esterases tested against 96 esters together with computationally efficient rigidity analyses to understand the molecular origin of the observed promiscuity range. Unexpectedly, our data reveal that promiscuous esterases are significantly less flexible than specific ones, are significantly more thermostable, and have a significantly increased specific activity. These results may be reconciled with a model according to which structural flexibility in the case of specific esterases serves for conformational proofreading. Our results signify that an esterase sequence space can be screened by rigidity analyses for promiscuous esterases as starting points for further exploration in biotechnology and synthetic chemistry.
000893205 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000893205 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x1
000893205 536__ $$0G:(DE-HGF)POF4-2172$$a2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)$$cPOF4-217$$fPOF IV$$x2
000893205 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x3
000893205 536__ $$0G:(DE-Juel1)hkf7_20200501$$aForschergruppe Gohlke (hkf7_20200501)$$chkf7_20200501$$fForschergruppe Gohlke$$x4
000893205 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893205 7001_ $$0P:(DE-HGF)0$$aCoscolín, Cristina$$b1
000893205 7001_ $$0P:(DE-HGF)0$$aDavid, Benoit$$b2
000893205 7001_ $$0P:(DE-HGF)0$$aMulnaes, Daniel$$b3
000893205 7001_ $$00000-0003-4962-4714$$aFerrer, Manuel$$b4
000893205 7001_ $$0P:(DE-Juel1)131457$$aJaeger, Karl-Erich$$b5$$ufzj
000893205 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b6$$eCorresponding author
000893205 773__ $$0PERI:(DE-600)1491237-5$$a10.1021/acs.jcim.1c00152$$gVol. 61, no. 5, p. 2383 - 2395$$n5$$p2383 - 2395$$tJournal of chemical information and modeling$$v61$$x1549-960X$$y2021
000893205 8564_ $$uhttps://juser.fz-juelich.de/record/893205/files/acs.jcim.1c00152.pdf
000893205 8564_ $$uhttps://juser.fz-juelich.de/record/893205/files/MS_EH_CN_final_short_JCIM_rev_final.pdf$$yPublished on 2021-05-05. Available in OpenAccess from 2022-05-05.
000893205 909CO $$ooai:juser.fz-juelich.de:893205$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176299$$aForschungszentrum Jülich$$b0$$kFZJ
000893205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131457$$aForschungszentrum Jülich$$b5$$kFZJ
000893205 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b6$$kFZJ
000893205 9130_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000893205 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000893205 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x1
000893205 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2172$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x2
000893205 9141_ $$y2021
000893205 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000893205 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000893205 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000893205 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-05-04
000893205 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000893205 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000893205 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000893205 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM INF MODEL : 2019$$d2021-05-04
000893205 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000893205 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-05-04$$wger
000893205 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000893205 920__ $$lyes
000893205 9201_ $$0I:(DE-Juel1)IBG-4-20200403$$kIBG-4$$lBioinformatik$$x0
000893205 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x1
000893205 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x2
000893205 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x3
000893205 980__ $$ajournal
000893205 980__ $$aVDB
000893205 980__ $$aUNRESTRICTED
000893205 980__ $$aI:(DE-Juel1)IBG-4-20200403
000893205 980__ $$aI:(DE-Juel1)NIC-20090406
000893205 980__ $$aI:(DE-Juel1)JSC-20090406
000893205 980__ $$aI:(DE-Juel1)IBI-7-20200312
000893205 9801_ $$aFullTexts