000893208 001__ 893208 000893208 005__ 20210628151000.0 000893208 0247_ $$2doi$$a10.3389/fmed.2021.625561 000893208 0247_ $$2Handle$$a2128/27971 000893208 0247_ $$2pmid$$a34055823 000893208 0247_ $$2WOS$$aWOS:000654207000001 000893208 037__ $$aFZJ-2021-02625 000893208 082__ $$a610 000893208 1001_ $$0P:(DE-HGF)0$$aDuchemin, Charlotte$$b0$$eCorresponding author 000893208 245__ $$aProduction Cross-Section Measurements for Terbium Radionuclides of Medical Interest Produced in Tantalum Targets Irradiated by 0.3 to 1.7 GeV Protons and Corresponding Thick Target Yield Calculations 000893208 260__ $$aLausanne$$bFrontiers Media$$c2021 000893208 3367_ $$2DRIVER$$aarticle 000893208 3367_ $$2DataCite$$aOutput Types/Journal article 000893208 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1623867831_4268 000893208 3367_ $$2BibTeX$$aARTICLE 000893208 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000893208 3367_ $$00$$2EndNote$$aJournal Article 000893208 520__ $$aThis work presents the production cross-sections of Ce, Tb and Dy radionuclides produced by 300 MeV to 1.7 GeV proton-induced spallation reactions in thin tantalum targets as well as the related Thick Target production Yield (TTY) values and ratios. The motivation is to optimise the production of terbium radionuclides for medical applications and to find out at which energy the purity of the collection by mass separation would be highest. For that purpose, activation experiments were performed using the COSY synchrotron at FZ Jülich utilising the stacked-foils technique and γ spectrometry with high-purity germanium detectors. The Al-27(p,x)Na-24 reaction has been used as monitor reaction. All experimental data have been systematically compared with the existing literature. 000893208 536__ $$0G:(DE-HGF)POF4-525$$a525 - Decoding Brain Organization and Dysfunction (POF4-525)$$cPOF4-525$$fPOF IV$$x0 000893208 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000893208 7001_ $$0P:(DE-HGF)0$$aCocolios, Thomas E.$$b1 000893208 7001_ $$0P:(DE-HGF)0$$aDockx, Kristof$$b2 000893208 7001_ $$0P:(DE-HGF)0$$aFarooq-Smith, Gregory J.$$b3 000893208 7001_ $$0P:(DE-Juel1)131152$$aFelden, Olaf$$b4$$ufzj 000893208 7001_ $$0P:(DE-HGF)0$$aFormento-Cavaier, Roberto$$b5 000893208 7001_ $$0P:(DE-Juel1)131164$$aGebel, Ralf$$b6$$ufzj 000893208 7001_ $$0P:(DE-HGF)0$$aKöster, Ulli$$b7 000893208 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b8$$ufzj 000893208 7001_ $$0P:(DE-Juel1)131846$$aScholten, Bernhard$$b9$$ufzj 000893208 7001_ $$0P:(DE-Juel1)131849$$aSpahn, Ingo$$b10$$ufzj 000893208 7001_ $$0P:(DE-Juel1)131850$$aSpellerberg, Stefan$$b11$$ufzj 000893208 7001_ $$0P:(DE-HGF)0$$aStamati, Maria E.$$b12 000893208 7001_ $$0P:(DE-HGF)0$$aStegemann, Simon$$b13 000893208 7001_ $$0P:(DE-HGF)0$$aVerhoeven, Hannelore$$b14 000893208 773__ $$0PERI:(DE-600)2775999-4$$a10.3389/fmed.2021.625561$$gVol. 8, p. 625561$$p625561$$tFrontiers in medicine$$v8$$x2296-858X$$y2021 000893208 8564_ $$uhttps://juser.fz-juelich.de/record/893208/files/fmed-08-625561.pdf$$yOpenAccess 000893208 909CO $$ooai:juser.fz-juelich.de:893208$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000893208 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131152$$aForschungszentrum Jülich$$b4$$kFZJ 000893208 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131164$$aForschungszentrum Jülich$$b6$$kFZJ 000893208 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b8$$kFZJ 000893208 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131846$$aForschungszentrum Jülich$$b9$$kFZJ 000893208 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131849$$aForschungszentrum Jülich$$b10$$kFZJ 000893208 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131850$$aForschungszentrum Jülich$$b11$$kFZJ 000893208 9130_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0 000893208 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0 000893208 9141_ $$y2021 000893208 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-29 000893208 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-29 000893208 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-29 000893208 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000893208 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-29 000893208 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-29 000893208 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2020-09-29 000893208 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-29 000893208 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-29 000893208 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000893208 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-09-29 000893208 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-29 000893208 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-29 000893208 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-29 000893208 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-29 000893208 920__ $$lyes 000893208 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x0 000893208 9201_ $$0I:(DE-Juel1)IKP-TA-20111104$$kIKP-TA$$lIKP- Technische und Administrative Infrastruktur$$x1 000893208 9201_ $$0I:(DE-Juel1)IKP-4-20111104$$kIKP-4$$lKernphysikalische Großgeräte$$x2 000893208 980__ $$ajournal 000893208 980__ $$aVDB 000893208 980__ $$aUNRESTRICTED 000893208 980__ $$aI:(DE-Juel1)INM-5-20090406 000893208 980__ $$aI:(DE-Juel1)IKP-TA-20111104 000893208 980__ $$aI:(DE-Juel1)IKP-4-20111104 000893208 9801_ $$aFullTexts