000893208 001__ 893208
000893208 005__ 20210628151000.0
000893208 0247_ $$2doi$$a10.3389/fmed.2021.625561
000893208 0247_ $$2Handle$$a2128/27971
000893208 0247_ $$2pmid$$a34055823
000893208 0247_ $$2WOS$$aWOS:000654207000001
000893208 037__ $$aFZJ-2021-02625
000893208 082__ $$a610
000893208 1001_ $$0P:(DE-HGF)0$$aDuchemin, Charlotte$$b0$$eCorresponding author
000893208 245__ $$aProduction Cross-Section Measurements for Terbium Radionuclides of Medical Interest Produced in Tantalum Targets Irradiated by 0.3 to 1.7 GeV Protons and Corresponding Thick Target Yield Calculations
000893208 260__ $$aLausanne$$bFrontiers Media$$c2021
000893208 3367_ $$2DRIVER$$aarticle
000893208 3367_ $$2DataCite$$aOutput Types/Journal article
000893208 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1623867831_4268
000893208 3367_ $$2BibTeX$$aARTICLE
000893208 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893208 3367_ $$00$$2EndNote$$aJournal Article
000893208 520__ $$aThis work presents the production cross-sections of Ce, Tb and Dy radionuclides produced by 300 MeV to 1.7 GeV proton-induced spallation reactions in thin tantalum targets as well as the related Thick Target production Yield (TTY) values and ratios. The motivation is to optimise the production of terbium radionuclides for medical applications and to find out at which energy the purity of the collection by mass separation would be highest. For that purpose, activation experiments were performed using the COSY synchrotron at FZ Jülich utilising the stacked-foils technique and γ spectrometry with high-purity germanium detectors. The Al-27(p,x)Na-24 reaction has been used as monitor reaction. All experimental data have been systematically compared with the existing literature.
000893208 536__ $$0G:(DE-HGF)POF4-525$$a525 - Decoding Brain Organization and Dysfunction (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000893208 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893208 7001_ $$0P:(DE-HGF)0$$aCocolios, Thomas E.$$b1
000893208 7001_ $$0P:(DE-HGF)0$$aDockx, Kristof$$b2
000893208 7001_ $$0P:(DE-HGF)0$$aFarooq-Smith, Gregory J.$$b3
000893208 7001_ $$0P:(DE-Juel1)131152$$aFelden, Olaf$$b4$$ufzj
000893208 7001_ $$0P:(DE-HGF)0$$aFormento-Cavaier, Roberto$$b5
000893208 7001_ $$0P:(DE-Juel1)131164$$aGebel, Ralf$$b6$$ufzj
000893208 7001_ $$0P:(DE-HGF)0$$aKöster, Ulli$$b7
000893208 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b8$$ufzj
000893208 7001_ $$0P:(DE-Juel1)131846$$aScholten, Bernhard$$b9$$ufzj
000893208 7001_ $$0P:(DE-Juel1)131849$$aSpahn, Ingo$$b10$$ufzj
000893208 7001_ $$0P:(DE-Juel1)131850$$aSpellerberg, Stefan$$b11$$ufzj
000893208 7001_ $$0P:(DE-HGF)0$$aStamati, Maria E.$$b12
000893208 7001_ $$0P:(DE-HGF)0$$aStegemann, Simon$$b13
000893208 7001_ $$0P:(DE-HGF)0$$aVerhoeven, Hannelore$$b14
000893208 773__ $$0PERI:(DE-600)2775999-4$$a10.3389/fmed.2021.625561$$gVol. 8, p. 625561$$p625561$$tFrontiers in medicine$$v8$$x2296-858X$$y2021
000893208 8564_ $$uhttps://juser.fz-juelich.de/record/893208/files/fmed-08-625561.pdf$$yOpenAccess
000893208 909CO $$ooai:juser.fz-juelich.de:893208$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893208 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131152$$aForschungszentrum Jülich$$b4$$kFZJ
000893208 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131164$$aForschungszentrum Jülich$$b6$$kFZJ
000893208 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b8$$kFZJ
000893208 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131846$$aForschungszentrum Jülich$$b9$$kFZJ
000893208 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131849$$aForschungszentrum Jülich$$b10$$kFZJ
000893208 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131850$$aForschungszentrum Jülich$$b11$$kFZJ
000893208 9130_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000893208 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000893208 9141_ $$y2021
000893208 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-29
000893208 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-29
000893208 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-29
000893208 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000893208 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-29
000893208 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-29
000893208 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2020-09-29
000893208 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-29
000893208 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-29
000893208 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893208 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-09-29
000893208 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-29
000893208 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-29
000893208 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-29
000893208 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-29
000893208 920__ $$lyes
000893208 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x0
000893208 9201_ $$0I:(DE-Juel1)IKP-TA-20111104$$kIKP-TA$$lIKP- Technische und Administrative Infrastruktur$$x1
000893208 9201_ $$0I:(DE-Juel1)IKP-4-20111104$$kIKP-4$$lKernphysikalische Großgeräte$$x2
000893208 980__ $$ajournal
000893208 980__ $$aVDB
000893208 980__ $$aUNRESTRICTED
000893208 980__ $$aI:(DE-Juel1)INM-5-20090406
000893208 980__ $$aI:(DE-Juel1)IKP-TA-20111104
000893208 980__ $$aI:(DE-Juel1)IKP-4-20111104
000893208 9801_ $$aFullTexts