001     893213
005     20220126162603.0
024 7 _ |a 10.1016/j.scitotenv.2021.148257
|2 doi
024 7 _ |a 0048-9697
|2 ISSN
024 7 _ |a 1879-1026
|2 ISSN
024 7 _ |a 2128/30140
|2 Handle
024 7 _ |a altmetric:112107150
|2 altmetric
024 7 _ |a pmid:34412378
|2 pmid
024 7 _ |a WOS:000686014900007
|2 WOS
037 _ _ |a FZJ-2021-02630
082 _ _ |a 610
100 1 _ |a Schreiber, Andrea
|0 P:(DE-Juel1)130483
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Life Cycle Assessment studies of rare earths production - Findings from a systematic review
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1641986832_30122
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Rare earth elements (REEs) are one of the most important elements used for transformation of the fossil era into a decarbonized future. REEs are essential for wind, electric and hybrid vehicles, and low-energy lighting. However, there is a general understanding that REEs come along with multiple environmental problems during their extraction and processing.Life cycle assessment (LCA) is a well-established method for a holistic evaluation of environmental effects of a product system considering the entire life cycle. This paper reviews LCA studies for determining the environmental impacts of rare earth oxide (REO) production from Bayan Obo and ion adsorption clays (IAC) in China, and shows why some studies lead to over- and underestimated results.We found out that current LCA studies of REE production provide a good overall understanding of the underlying process chains, which are mainly located in China. However, life cycle inventories (LCI) appear often not complete. Several lack accuracy, consistency, or transparency. Hence, resulting environmental impacts are subject to great uncertainty. This applies in particular to radioactivity and the handling of wastewater and slurry in tailing ponds, which have often been neglected.This article reviews 35 studies to identify suitable LCAs for comparison. The assessment covers the world's largest REO production facility, located in Bayan Obo, as well as in-situ leaching of IACs in the Southern Provinces of China. A total of 12 studies are selected, 8 for Bayan Obo and IACs each. The LCIs of these studies are reviewed in detail. The effects of over- and underestimated LCIs on the life cycle impact assessment (LCIA) are investigated. The partly controversial results of existing LCAs are analyzed thoroughly and discussed. Our results show that an increased consistency in LCA studies on REO production is needed.
536 _ _ |a 1112 - Societally Feasible Transformation Pathways (POF4-111)
|0 G:(DE-HGF)POF4-1112
|c POF4-111
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Marx, Josefine
|0 P:(DE-Juel1)130473
|b 1
|u fzj
700 1 _ |a Zapp, Petra
|0 P:(DE-Juel1)130493
|b 2
|u fzj
773 _ _ |a 10.1016/j.scitotenv.2021.148257
|g Vol. 791, p. 148257 -
|0 PERI:(DE-600)1498726-0
|p 148257 -
|t The science of the total environment
|v 791
|y 2021
|x 0048-9697
856 4 _ |u https://juser.fz-juelich.de/record/893213/files/Post%20print.pdf
|y Published on 2021-06-03. Available in OpenAccess from 2023-06-03.
909 C O |o oai:juser.fz-juelich.de:893213
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130483
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130473
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130493
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-111
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Energiesystemtransformation
|9 G:(DE-HGF)POF4-1112
|x 0
913 0 _ |a DE-HGF
|b Energie
|l Technologie, Innovation und Gesellschaft
|1 G:(DE-HGF)POF3-150
|0 G:(DE-HGF)POF3-153
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-28
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI TOTAL ENVIRON : 2019
|d 2021-01-28
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCI TOTAL ENVIRON : 2019
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-STE-20101013
|k IEK-STE
|l Systemforschung und Technologische Entwicklung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-STE-20101013
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21