000893247 001__ 893247
000893247 005__ 20210810182033.0
000893247 0247_ $$2doi$$a10.3762/bjnano.12.46
000893247 0247_ $$2Handle$$a2128/27977
000893247 0247_ $$2altmetric$$aaltmetric:107772736
000893247 0247_ $$2pmid$$a34221802
000893247 0247_ $$2WOS$$aWOS:000664148200001
000893247 037__ $$aFZJ-2021-02647
000893247 082__ $$a620
000893247 1001_ $$00000-0002-4566-8499$$aGrewal, Abhishek$$b0$$eCorresponding author
000893247 245__ $$aLocal stiffness and work function variations of hexagonal boron nitride on Cu(111)
000893247 260__ $$aFrankfurt, M.$$bBeilstein-Institut zur Förderung der Chemischen Wissenschaften$$c2021
000893247 3367_ $$2DRIVER$$aarticle
000893247 3367_ $$2DataCite$$aOutput Types/Journal article
000893247 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1623938277_24732
000893247 3367_ $$2BibTeX$$aARTICLE
000893247 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893247 3367_ $$00$$2EndNote$$aJournal Article
000893247 520__ $$aCombined scanning tunnelling and atomic force microscopy using a qPlus sensor enables the measurement of electronic and mechanic properties of two-dimensional materials at the nanoscale. In this work, we study hexagonal boron nitride (h-BN), an atomically thin 2D layer, that is van der Waals-coupled to a Cu(111) surface. The system is of interest as a decoupling layer for functional 2D heterostructures due to the preservation of the h-BN bandgap and as a template for atomic and molecular adsorbates owing to its local electronic trapping potential due to the in-plane electric field. We obtain work function (Φ) variations on the h-BN/Cu(111) superstructure of the order of 100 meV using two independent methods, namely the shift of field emission resonances and the contact potential difference measured by Kelvin probe force microscopy. Using 3D force profiles of the same area we determine the relative stiffness of the Moiré region allowing us to analyse both electronic and mechanical properties of the 2D layer simultaneously. We obtain a sheet stiffness of 9.4 ± 0.9 N·m−1, which is one order of magnitude higher than the one obtained for h-BN/Rh(111). Using constant force maps we are able to derive height profiles of h-BN/Cu(111) showing that the system has a corrugation of 0.6 ± 0.2 Å, which helps to demystify the discussion around the flatness of the h-BN/Cu(111) substrate
000893247 536__ $$0G:(DE-HGF)POF4-521$$a521 - Quantum Materials (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000893247 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893247 7001_ $$0P:(DE-Juel1)185853$$aWang, Yuqi$$b1
000893247 7001_ $$0P:(DE-HGF)0$$aMünks, Matthias$$b2
000893247 7001_ $$0P:(DE-HGF)0$$aKern, Klaus$$b3
000893247 7001_ $$0P:(DE-Juel1)174438$$aTernes, Markus$$b4$$eCorresponding author
000893247 773__ $$0PERI:(DE-600)2583584-1$$a10.3762/bjnano.12.46$$gVol. 12, p. 559 - 565$$p559 - 565$$tBeilstein journal of nanotechnology$$v12$$x2190-4286$$y2021
000893247 8564_ $$uhttps://juser.fz-juelich.de/record/893247/files/2190-4286-12-46.pdf$$yOpenAccess
000893247 909CO $$ooai:juser.fz-juelich.de:893247$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185853$$aForschungszentrum Jülich$$b1$$kFZJ
000893247 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)185853$$aExternal Institute$$b1$$kExtern
000893247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174438$$aForschungszentrum Jülich$$b4$$kFZJ
000893247 9130_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000893247 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000893247 9141_ $$y2021
000893247 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000893247 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000893247 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000893247 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBEILSTEIN J NANOTECH : 2019$$d2021-01-27
000893247 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-27
000893247 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-27
000893247 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000893247 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000893247 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000893247 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893247 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-01-27
000893247 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000893247 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000893247 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-27
000893247 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000893247 920__ $$lyes
000893247 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
000893247 980__ $$ajournal
000893247 980__ $$aVDB
000893247 980__ $$aUNRESTRICTED
000893247 980__ $$aI:(DE-Juel1)PGI-3-20110106
000893247 9801_ $$aFullTexts