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ABSTRACT
The properties of semiflexible polymers tethered by one end to an impenetrable wall and exposed to oscillatory shear flow are inves-
tigated by mesoscale simulations. A polymer, confined in two dimensions, is described by a linear bead-spring chain, and fluid
interactions are incorporated by the Brownian multiparticle collision dynamics approach. At small strain, the polymers follow the
applied flow field. However, at high strain, we find a strongly nonlinear response with major conformational changes. Polymers
are stretched along the flow direction and exhibit U-shaped conformations while following the flow. As a consequence of confine-
ment in the half-space, frequency doubling in the time-dependent polymer properties appears along the direction normal to the
wall.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0051427

I. INTRODUCTION

Studies of the nonequilibrium behavior of polymer systems
provide a link between their microscopic molecular character-
istics and the emerging macroscopic dynamical properties.1–6 A
major experimental breakthrough in resolving and visualizing the
nonequilibrium properties of individual molecules was achieved by
studies on single DNA filaments,7 which paved the way to explore a
large variety of polymer properties under flows.

From the theoretical side, several detailed computational
molecular models have been considered, which enhance our under-
standing of molecular processes. In particular, single-polymer stud-
ies provide the opportunity to directly observe the microscopic
conformational properties of individual polymers close to equilib-
rium or under flow conditions, thereby facilitating access to their
non-equilibrium conformational properties, which are ultimately
responsible for the macroscopic rheological behavior. The desire to
visualize individual polymer conformations in flow, both from an
experimental and simulation point of view, is strongly linked with
advances in the statistical description of their properties provided
by molecular theoretical models.6,8,9

Semiflexible polymer-type molecular structures are
omnipresent in biological systems, e.g., DNA, actin filaments,
and microtubules, and their rigidity is fundamental for their
functions. Indeed, actin filaments contribute with their rigidity to
the mechanical properties of the cytoskeleton, and the ability of
DNA to pack in the genome or inside a virus capsid is controlled
by its persistence length. As a consequence, the properties of
semiflexible polymers have been intensively investigated.10–17 Here,
theoretical9,18–21 and computational22–40 studies revealed novel
dynamical, conformational, and rheological properties.

The large majority of these studies focus on three-dimensional
systems, and predominantly, single-polymer theoretical and simula-
tion studies have been performed under steady shear and extensional
flow in the bulk.9,33,41 Similarly, in experiments, single DNA fila-
ments have been considered, in particular, filaments grafted on a
wall by one end under steady shear, and their mechanical proper-
ties42 and relaxation dynamics43 have been examined. Further exper-
iments44,45 revealed the existence of a cyclic dynamics, which has
been confirmed by simulations.45,46

Polymers in two dimensions are of interest on their own.
Compared to the three-dimensional case, there are two major
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differences. On the one hand, excluded-volume interactions are
more important, and on the other hand, hydrodynamics can be
neglected, specifically, in the case of strongly adsorbed polymers.47

Such systems can be realized experimentally by considering fil-
aments strongly adsorbed onto a surface, onto a membrane, or
at interfaces separating immiscible fluids.47–49 In particular, end-
anchored semiflexible polymers have been considered, where the
central monomer is subject to an oscillatory force, and a transi-
tion from a limit cycle to an aperiodic dynamics with increasing
rigidity has been predicted theoretically.50 The dynamics of semi-
flexible polymers under shear has been investigated numerically,
and substantial stiffness-dependent conformational changes at high
flow rates have been obtained.51 Specifically, more flexible polymers
are extended by the flow, while stiffer filaments contract. Moreover,
filaments are aligned by the flow with a tumbling motion that, at
high shear rates, resembles the motion of flexible polymers in three
dimensions.

Theory, simulations, and experiments typically consider sta-
tionary flows in the linear viscoelastic regime. However, it is impor-
tant to unravel the polymer dynamics when time-dependent flows
are applied, specifically large amplitude oscillatory shear (LAOS)
flows. Such studies provide additional insight into the macro-
scopic polymer properties, specifically their viscoelastic behav-
ior.52,53 Despite the deep interest and experimental relevance, so
far very few theoretical and simulation studies have been per-
formed under such flow conditions. In Ref. 54, the extension and
migration of a chain, confined in a microchannel and subject to
oscillatory pressure-driven flow, were observed. Later, Brownian
dynamics studies of macromolecules under oscillatory shear flow
have been performed.55,56 In contrast, many more LAOS exper-
iments have been conducted.52,53,57 Yet, no study so far consid-
ered a single tethered semiflexible chain subject to oscillatory shear
flow.

In this paper, we investigate the conformational and dynami-
cal properties of a semiflexible polymer in two dimensions, tethered
by one of its ends on a reflecting wall, in the presence of an oscilla-
tory shear flow by mesoscale simulations. A polymer is modeled as a
self-avoiding worm-like filament. Neglecting hydrodynamic interac-
tions, the polymer is assumed to be in contact with a Brownian heat
bath implemented via the Brownian version58,59 of the multiparticle
collision dynamics approach.59,60 The polymer properties are char-
acterized in terms of the strain defined as the ratio of the shear rate
to the shear frequency. For low strain, the polymers behave roughly
as at equilibrium. In the opposite limit of high strain, they show
at each shear half-cycle average properties comparable to those at
steady shear—they fully elongate and flip back and forth following
the external flow. For intermediate values of strain, flipping is disfa-
vored, and polymers may remain preferentially in a coiled state when
shear changes sign without re-orientating along the instantaneous
flow direction. The analysis of the amplitudes of the undulation
modes suggests that polymers exhibit a flexible polymer-like behav-
ior at larger length scales along the shear direction, despite their
significant stiffness in the absence of the external flow. The peri-
odic motion of the center of mass displays the same frequency as the
external shear along the flow direction, while a frequency doubling
in the normal direction appears by wall reflection, which “repels”
the polymer as the flow drags it from one side to the other in a
cycle.

The numerical models for the polymer and the Brownian fluid
are introduced in Sec. II. The results for the conformational and
the dynamical behavior are presented in Sec. III. Finally, Sec. IV
summarizes and discusses the main findings of this study.

II. MODEL AND METHOD
We model a filament as a linear bead-spring chain with N beads

of mass M separated by bonds of length r0 and confined in the
positive half-plane of the two dimensional space. The first bead is
tethered at the origin (0, 0)T of the Cartesian reference frame, with
no preferred orientation of the first bond. The beads are subjected to
forces by the total potential U = Ubond +Ubend +Uex +Uw . Bonds
are described by the harmonic potential

Ubond =
κh

2

N−1

∑
i=1
(∣ri+1 − ri∣ − r0)2, (1)

where ri denotes the position vector of the ith bead (i = 1, . . . , N) and
κh is the force constant. The stiffness of the polymer is implemented
by the bending potential

Ubend = κ
N−2

∑
i=1
(1 − cos φi), (2)

where κ is the bending rigidity and φi is the angle between two con-
secutive bond vectors. The filament persistence length Lp is related
to κ via Lp = 2κr0/kBT, where kBT is the thermal energy, with T
being temperature and kB being Boltzmann’s constant. The shifted
and truncated Lennard-Jones potential

Uex = 4ϵ[(σ
r
)

12
− (σ

r
)

6
+ 1

4
]Θ(21/6σ − r) (3)

ensures the self-avoidance of non-connected beads. Here, r is the
distance between two beads and Θ(r) is the Heaviside function
[Θ(r) = 0 for r < 0 and Θ(r) = 1 for r ≥ 0]. Confinement in the
half-plane y > 0 is achieved by a repulsive wall implemented via the
potential

Uw = 4ϵ
⎡⎢⎢⎢⎢⎣
(σw

y
)

12

− (σw
y
)

6

+ 1
4

⎤⎥⎥⎥⎥⎦
Θ(21/6σw − y), (4)

where y is the distance of a bead from the wall. The dynam-
ics of the beads is described by Newton’s equations of motion,
which are integrated by the velocity-Verlet algorithm with time
step Δtp.61,62

Shear flow and thermal fluctuations are implemented
by the Brownian multiparticle collision dynamics approach
(B-MPC),58,59,63 where hydrodynamic interactions are neglected. In
this method, stochastic collisions between each bead and a number
ρ of “fluid” phantom particles of mass m mimic interactions of
a fluid volume surrounding a bead. The moment of a phantom
particle is Maxwellian distributed, with variance mkBT and mean
(mγ̇y sin(2πt/T), 0)T at time t in the presence of the oscillating
shear flow of shear rate γ̇, period T, and orientation along the x axis.
The collision process itself is implemented via the stochastic rotation
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dynamics (SRD) variant of the MPC method.59,64,65 Here, the rela-
tive velocity of a bead, with respect to the center-of-mass velocity of
the bead and its related phantom particles, is rotated in the xy-plane
by a fixed angle ±α of uniformly distributed sign. Collisions occur at
time intervals Δt, where Δt > Δtp.

Simulations are performed for the parameters α = 130○,
Δt = 0.1tu, with the time unit tu =

√
mr2

0/(kBT), M = ρm, ρ = 5,
κhr2

0/(kBT) = 4 × 103, ϵ/(kBT) = 1, σ = r0, σw = r0/2, N = 101, and
Δtp = 10−2Δt. The value of κh ensures the length L = 100r0 of the
polymer within 1% for all systems and flow conditions.

III. RESULTS
We study semiflexible polymers with the persistence lengths

Lp/L = 0.5 and 2. B-MPC simulations of free filaments yield the end-
to-end vector relaxation times τr ≃ (1.9, 3.9) × 106tu.51 The tethered
polymers are initialized with beads aligned along the y-direction and
are equilibrated up to 5 × 106tu. Subsequently, data are collected up
to the longest simulated time 108tu and averaged over half-periods
with positive shear flow. The flow is characterized in terms of the
Weissenberg number Wi = τr γ̇ and the Deborah number De = τrω,
where ω = 2π/T is the shear frequency. Since in oscillatory flow the
strain in a half-cycle is proportional to γ̇/ω =Wi/De, averages will be
characterized as a function of this ratio in the following. The shear
rate is varied in the range 0 ≤Wi ≲ 103, while the frequency is altered
such that 0.1 ≤Wi/De ≤ 100.

A. Conformational properties
We characterize the filament conformational properties by the

end-to-end vector Re = rN − r1. The oscillatory shear implies a cyclic
dynamics of filament collapse, stretching, and alignment along the
flow direction (see Movies 1-4 given in the supplementary material).

1. Filament stretching
Stretching along the flow direction is characterized by the max-

imum extension Rex,max of the polymer along the x axis in a cycle or,
equivalently, by the average deficit length-ratio ε = 1 − ⟨Rex,max⟩/L,
where the average is performed over periods.

Figure 1 displays ε as a function of the strain Wi/De. The
data for the various De nearly collapse when plotted as a func-
tion of Wi/De, a feature that also applies to other quantities. Three
regimes can be identified, which we will denote as low-(Wi/De ≲ 1),
intermediate-(1 ≲Wi/De ≲ 10), and high-strain regime (Wi/De
≳ 10). In the low-strain regime, either the shear rate or/and the
period is so small that the shear is hardly able to deform the polymer
compared to the equilibrium value. With increasing strain beyond
unity, the deficit length decreases very rapidly, and for Wi/De > 10,
a power-law regime seems to appear, with an exponent of −1/3
for De = 10. This exponent is consistent with experimental results
on tethered semiflexible DNA molecules under steady shear.66 The
high-strain regime corresponds to high values either of the shear rate
or the shear period, implying a large polymer stretching (ε ≲ 10−2),
and the approximations of Ref. 66 in the derivation of shear-rate
dependence apply. For De > 10, there seem to be some deviations
from the power law −1/3 or the power-law regime has not yet been

FIG. 1. Mean deficit length-ratio ε as a function of the strain Wi/De for Lp/L = 0.5
(left) and 2 (right) and De = 10 (black open circles), 25 (red filled circles), 50 (green
filled stars), 100 (blue open triangles), and 200 (magenta open squares). The slope
of the full lines is −1/3.

reached; a detailed analysis is hampered by necessary very large
shear rates. Noteworthy, stiffer polymers are stronger stretched than
flexible ones.

2. Height above wall
Confinement to the positive semi-space breaks spatial symme-

try and leads to a geometry-induced polymer stretching normal to
the wall. The dependence of the height above the wall, defined as the
average distance ⟨yN⟩ of bead N from the wall, on strain is depicted
in Fig. 2.

The height decreases with increasing strain according to the
power law ⟨yN⟩ ∼ (Wi/De)−1/3 for high strain, independent of the
considered stiffness. The range of the scaling regime roughly coin-
cides with that in Fig. 1 for the deficit length. Moreover, our simula-
tions yield the dependence ⟨y2

N⟩ ∼ (Wi/De)−2/3 ∼ ⟨yN⟩2 in the high
Wi/De regime. This dependence agrees with the scaling prediction
for the fluctuations normal to a wall of a free-draining semiflexible
polymers under shear flow.66

FIG. 2. Mean polymer height above wall as a function of the strain Wi/De for
Lp/L = 0.5 (left) and 2 (right) and De = 10 (black open circles), 25 (red filled cir-
cles), 50 (green filled stars), 100 (blue open triangles), and 200 (magenta open
squares). The solid lines indicate the slope −1/3. ⟨yN,0⟩ is the mean polymer
height at equilibrium.
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3. Polymer deformation
More detailed insight into the polymer deformation is gained

by the distribution function of the end-to-end vector Re = ∣Re∣ (see
Fig. 3). In the absence of shear, the distribution function exhibits a
single peak at Re/L ≃ 1 for Lp/L = 2 corresponding to a fully elon-
gated configuration. With decreasing persistence length, the distri-
bution broadens and the peak moves to Re/L ≃ 0.87. For the stiffer
chain at small strain, Wi/De = 2.5, the conformations are already
substantially affected by shear, and Re values over a broad range,
0.3 ≲ ∣Re/L∣ ≲ 0.85, are nearly equally probable. This range broadens
with decreasing De at fixed Wi, the probabilities in the plateau-like
regime decrease, and a peak appears in the vicinity of full stretching.
The latter indicates an increasing probability of strongly stretched
polymers. At the same time, P(Re) decreases at smaller end-to-end
vectors. We obtain approximately the same distribution functions
for the more flexible polymer.

The variations of the distribution function with De affect the
average end-to-end vector Re. Associated with the overall decrease
of the distribution function by a change in Wi/De from zero to
Wi/De = 2.5 is a small drop of the average mean end-to-end dis-
tance, ⟨Re⟩. A further increase in Wi/De implies a monotonic
swelling of ⟨Re⟩. At the same time, ⟨(Re − ⟨Re⟩)2⟩ swells first with
increasing strain, reaches a maximum at Wi/De ≈ 8, and decreases
then by a power law with the exponent −1/3.

B. Dynamical properties
At high strain, a polymer flips back and forth following the

applied shear. However, the flipping mechanism strongly depends
on the interplay of shear and bending rigidity. In the case of a
more flexible polymer, the polymer recoils after the flow changes
sign, then flips and elongates (see the supplementary material,
Movie 1). In contrast, the stiffer polymer bends, assumes a U-
shaped conformation during flipping, and finally elongates (see
the supplementary material, Movie 2). Smaller strain disfavors
chain flips when the flow changes sign. Here, a polymer remains
coiled without flipping [see Fig. 4(b) and the supplementary
material, Movie 3] and, consequently, remains essentially in the

FIG. 3. Probability distribution function of the polymer end-to-end distance ∣re∣

for Lp/L = 0.5 (left) and 2 (right) and the Weissenberg number Wi = 0 (green
open squares) as well as Wi = 500 for De = 10 (black open circles), 50 (red filled
circles), and 200 (blue filled stars).

FIG. 4. Polymer conformations at the times t/T = 1, 1.25, 1.5, 1.75 (black, red,
green, and blue lines, respectively) after equilibration for Lp/L = 0.5 [(a) and (b)]
and Lp/L = 2 [(c) and (d)], Wi = 500, and De = 10 [(a) and (c)] and 200 [(b) and
(d)]. [See Movie 1 for case (a), Movie 2 for case (c), Movie 3 for case (b), and
Movie 4 for case (d) given in the supplementary material.]

positive half-space x > 0. This behavior is also observed for higher
bending stiffness. In the latter case, however, the chain flip occurs
more frequently than in the flexible case with the polymer recoil-
ing and reorienting [see Fig. 4(d) and the supplementary material,
Movie 4].

The described mechanism of chain flipping is supported by the
probability distribution functions P(Φ) of the inclination angle Φ,
which is defined as the angle between the polymer center-of-mass
position vector and the flow direction (Fig. 5). Figure 4 displays
conformations of polymers during one period. For large strain, the
polymers spend most of their time aligned with the flow direction
(the main peak is located at Φ < π/2) during the positive half-cycle
of the shear oscillation [Fig. 5 (top)] and opposite to the flow direc-
tion (the main peak is at Φ > π/2) during the negative half-cycle of
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FIG. 5. (top) Probability distribution function of the polymer inclination angle Φ
based on data from the positive half-cycle for Lp/L = 0.5, De = 10 (○, black),
50 (●, red), and 200 (⋆, blue), and Wi = 500. The distribution functions for
the negative half-cycle are mirror symmetric with respect to Φ/π = 1/2. (bot-
tom) Average of cos Φ as a function of the strain Wi/De for Lp/L = 0.5 and
De = 10 (black open circles), 25 (red filled circles), 50 (green filled stars), 100
(blue open triangles), and 200 (magenta open squares). The inset shows the vari-
ance ⟨(cos Φ − ⟨cos Φ⟩)2

⟩ as a function of Wi/De for Lp/L = 0.5 and De = 10
(black open circles), 25 (red filled circles), 50 (green filled stars), 100 (blue open
triangles), and 200 (magenta open squares).

the shear oscillation (the distribution functions for the negative half-
cycle are mirror symmetric with respect to Φ = π/2). This suggests
that for high values of the strain, the inclination angle and the shear
flow are of the same sign before the shear flow changes sign. Interest-
ingly, for the lowest considered value Wi/De = 2.5, the distribution
function P(Φ) for the positive and negative half-cycles are indistin-
guishable for the considered persistence lengths—P(Φ) shows two
broad peaks of comparable height symmetric with respect to the

shear direction (Φ = π/2). This indicates that polymers can either
flip or keep their orientation with equal probability when the shear
rate changes sign.

The average, ⟨cos Φ⟩ [Fig. 5 (bottom)], of the inclination angle
depends weakly on shear and increases logarithmically, ⟨cos Φ⟩
∼ log(Wi/De), on strain, while its variance has a maximum for
intermediate values of strain.

1. Center-of-mass motion
Figure 6 illustrates the time dependence of the center of mass,

rcm = (xcm, ycm)T , during three periods for Lp/L = 0.5. For the high-
est considered strain Wi/De = 50 [Fig. 6(a)], xcm exhibits a nearly in-
phase periodic motion with a small phase shift θ, and the dynamics
is apparently no longer harmonic. The component ycm shows very
narrow peaks whenever xcm changes sign and becomes very small as
soon as the polymer is stretched. Remarkably, ycm exhibits frequency
doubling. We like to stress that the frequency doubling is indepen-
dent of the considered quantity used to characterize the center-of-
mass motion. Specifically, we considered the time dependence of
the inclination angle Φ and that of the distance Rcm =

√
x2

cm + y2
cm.

While Φ exhibits the same frequency as the applied flow, Rcm shows
a frequency doubling. With decreasing Wi/De, the motion is still
periodic and becomes more harmonic with a larger phase shift
[Fig. 6(b)]. The ycm peaks are now broader and their amplitude
decreases. Finally, for the smallest value Wi/De = 2.5 [Fig. 6(c)],
xcm partially follows the external flow with a reduced amplitude,
which is no longer symmetric with respect to x = 0 due to entropic
effects, and the magnitude of the angle θ further increases. The time
sequence of ycm indicates that the polymer is no longer fully elon-
gated along the wall when the flow reaches its extreme values. The
peaks are very broad and no clear indication of a frequency doubling
can be observed since the amplitude of ycm is significantly reduced.
The comparable data for Lp/L = 2 show no appreciable differences.
In order to evaluate the phase shift θ, the values of xcm are fitted
to the function A sin(ωt + θ), where A and θ are fitting parameters.
The values of θ are in the range (−π/2, 0) and appear to be indepen-
dent on the persistence length (Fig. 7). The extracted dependence on
Wi/De can well be described by the function θ = arccot(−aWi/De)
with a = 0.054.

Further evidence of the discussed frequency doubling is
obtained by the autocorrelation functions of the Cartesian center-
of-mass coordinates (Fig. 8). Consistent with Fig. 6, the correlation
functions display a periodic motion. The xcm-component reveals the
same frequency as that of the external flow. More importantly, the
ycm-component clearly shows a frequency doubling for Wi/De ≳ 10.
The wall at y = 0 reflects the polymer every time the flow moves
the polymer from one side to the other. This process occurs twice
in every flow cycle causing the observed frequency doubling in the
dynamics along the y axis.

C. Internal polymer dynamics
The snapshots of Fig. 4 reveal strong polymer conformational

changes during oscillation cycles. We characterize the appearing
internal polymer dynamics by the normal mode expansion

ri =
N−1

∑
n=1

An(t) sin[qn(i − 1)] , i = 1, . . . , N, (5)
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FIG. 6. Time dependence of the polymer center-of-mass position along the flow (blue open circles), xcm, and the gradient (red filled circles), ycm, directions for Lp/L = 0.5,
Wi = 500, and De = 10 (a), 50 (b), and 200 (c). The black lines indicate the externally applied shear flow with an arbitrary amplitude, and the dashed lines are guides for
the eye.

with the wave vectors qn = (n − 1/2)π/(N − 1) (n = 1, . . . , N − 1).
The normal mode amplitudes An(t) = (Ax,n(t), Ay,n(t))T are
given by

Ax,n =
2

N − 1

N

∑
i=1

rx,i sin[qn(i − 1)], (6)

Ay,n =
2

N − 1

N

∑
i=1

ry,i sin[qn(i − 1)]. (7)

The dependence of the variance of the mode amplitudes
⟨δA2

n⟩ = ⟨(An − ⟨An⟩)2⟩ on the mode number is illustrated in Fig. 9

FIG. 7. Dependence of the phase shift θ on the strain Wi/De for Lp/L = 0.5 (blue
filled stars) and 2 (red filled circles) with Wi = 500. The full line represents the
fitted functional dependence 2arccot(−0.054Wi/De)/π.

for the stiffer polymer. Evidently, the variances of Ax,n and Ay,n are
distinctly different for the considered strain values. In the absence of
shear, both components of the mode amplitudes exhibit the mode
number dependence n−4 in accordance with the semiflexible charac-
ter of the considered polymers.67,68 Note that the plateau for large
mode numbers is a consequence of the discreteness of the poly-
mer with a finite number of modes. Along the flow direction, the
n−4 dependence persists even under shear due to the strong poly-
mer stretching. However, we observe pronounced strain effects on
Ay,n for small mode numbers 3 ≤ n ≤ 5. The indicated dependence
n−2, typical for flexible polymers,67,69,70 suggests that the polymer
acquires a flexible polymer-like behavior on larger length scales, with
a crossover to semiflexibility, n−4 dependence, on smaller scales,
along the gradient direction. A similar behavior is found for the
more flexible chain.

The dynamics of the mode amplitudes with n = 1, 2 is analyzed
in terms of the mode-autocorrelation functions ⟨Ax,n(t)Ax,n(0)⟩ and

FIG. 8. Time auto-correlations of the center-of-mass xcm (left) and ycm (right) Carte-
sian coordinates for Lp/L = 2, Wi = 500, and De = 10 (black open circles), 50 (red
filled circles), and 200 (blue filled stars).
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FIG. 9. Variance of the mode amplitudes Ax,n (open symbols connected by full
lines) and Ay,n (filled symbols connected by dashed lines) as functions of mode
number n for Lp/L = 2 with Wi = 500 and De = 10 (black open circles), 50 (red
open circles), and 200 (blue filled stars). The slopes of full and dashed lines are
−4 and −2, respectively.

⟨Ay,n(t)Ay,n(0)⟩. The results for various strains and the persistence
length Lp/L = 2 are presented in Fig. 10. The simulation data are
fitted by the function

f (t) = A[exp(−γt/T) − 1] + B[cos(Ωωt) − 1]
+ C[cos(2Ωωt) − 1] + 1, (8)

where the dimensionless factors γ and Ω characterize the relaxation
time and possible variations of the frequency with respect to the
imposed ω, respectively. The correlation functions for De = 50 and
De = 200 are well fitted by Eq. (8), while data for De = 10 do not
allow for a suitable fitting. The factor γ of the x component decreases
with increasing mode number, n, revealing a faster relaxation on
larger length scales along the flow direction. Thereby, γ depends
on De and is larger for De = 200. It increases with increasing ratio
Wi/De, reflecting the strong dependence of the relaxation process
on the external field.

At equilibrium, the variance ⟨δA2
n⟩ of the amplitudes is deter-

mined by the polymer relaxation times.70 The mode-number depen-
dence of γ is inconsistent with that of ⟨δA2

n⟩ (Fig. 9), which indicates
a strong influence of the external field on the time dependence of
the internal relaxation process. Along the y-direction, γ is approxi-
mately constant at fixed strain, indicating that the chain relaxation
time does not vary significantly on large scales along the shear
direction.

The factor Ω is close to unity, and oscillations occur with the
external frequency. For both the x and y components, the term with
2ω contributes to the oscillations of the correlation function, i.e., the
observed frequency doubling found for the center-of-mass motion
is also reflected in the internal dynamics.

FIG. 10. Autocorrelation function of the mode amplitudes for the modes n = 1
along the (a) x- and (b) y-direction as well as for n = 2 along the (c) x- and
(d) y-direction as a function of time with Lp/L = 2, Wi = 500, and De = 10 (black
open circles), 50 (red filled circles), and 200 (blue filled stars). The black dotted and
solid lines are fits of Eq. (8) to the data for De = 50 and De = 200, respectively.

IV. CONCLUSIONS
We have analyzed the conformational and dynamical prop-

erties of semiflexible polymers tethered at an impenetrable wall
under oscillatory shear flow. We identify three different regimes
in terms of polymer deformation as a function of strain. At small
strain, Wi/De ≲ 1, the polymer structures are close to the equi-
librium conformations and they are hardly affected by flow. For
intermediate values of strain, 1 <Wi/De < 10, the polymer is gradu-
ally stretched and its end-to-end distance increases logarithmically.
Above Wi/De ≳ 10, the deficit length exhibits a power-law decrease
with increasing strain, in agreement with experimental results under
steady shear flow.44,66

The polymer conformations are tightly coupled with their
dynamics. At high strain, the polymers follow the external oscilla-
tions of the flow with a small phase shift and are strongly stretched
and aligned with the wall. The polymer dynamics is far less enslaved
by the flow field for intermediate values of strains, which is reflected
by a larger phase difference between the flow-induced polymer
structures and the external flow. Most importantly, this allows for
more swollen polymer-like conformations and a higher polymer
density above the wall.

As might be expected for the considered geometry, conforma-
tional properties normal to the wall exhibit frequency doubling com-
pared to the external frequency ω, for example, the autocorrelation
function of the y-center-of-mass coordinate. While the properties
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along the x-direction are typically symmetric in terms of positive
and negative values, those along the y-direction are not and only
positive values are possible. Hence, positive y values correspond
to positive and negative x values, which determines the frequency
doubling.

In the absence of chirality and torsion, we expect semiflex-
ible polymers in three dimensions to exhibit similar features in
terms of conformational changes. This is reflected in the similar-
ity of our results with experiments of DNA molecules tethered to
a wall under shear flow.66 Hydrodynamic interactions influence
the polymer dynamics; however, the extent depends on their stiff-
ness. As far as semiflexible polymers are concerned, hydrodynamic
interactions are of minor importance so that the observed confor-
mational and dynamical features will also be present for polymers
embedded in a fluid even in three dimensions. Hydrodynamic
interactions are expected to more severely affect the dynamics of
flexible polymers. They are again weak for rather stretched confor-
mations66 but can dominate the dynamics in the coiled state and
accelerate the polymer motion. In particular, this affects the inter-
nal dynamics along the y-direction with a rather Zimm-like than
Rouse-like mode dependence of the relaxation times on larger length
scales.70

Our simulations provide valuable insight into the properties
of polymers exposed to oscillatory flows. Specifically, we demon-
strate that such simulations are feasible for experimentally relevant
parameters. Our studies are a first step only toward systematic inves-
tigations of polymer properties under oscillatory shear, and we hope
that they will prompt further simulations along that line.

SUPPLEMENTARY MATERIAL

The supplementary material shows the animations of the poly-
mer dynamics over two shear periods for the cases reported in
Fig. 4. Movie 1 is relative to the case with Lp/L = 0.5, Wi = 500, and
De = 10; movie 2 is relative to the case with Lp/L = 2, Wi = 500, and
De = 10; movie 3 is relative to the case with Lp/L = 0.5, Wi = 500,
and De = 200; and movie 4 is relative to the case with Lp/L = 2,
Wi = 500, and De = 200.
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