000893249 001__ 893249
000893249 005__ 20240610120122.0
000893249 0247_ $$2doi$$a10.1140/epje/s10189-021-00078-x
000893249 0247_ $$2ISSN$$a1292-8941
000893249 0247_ $$2ISSN$$a1292-895X
000893249 0247_ $$2ISSN$$a2429-5299
000893249 0247_ $$2Handle$$a2128/27974
000893249 0247_ $$2altmetric$$aaltmetric:107912826
000893249 0247_ $$2pmid$$a34101070
000893249 0247_ $$2WOS$$aWOS:000659191400001
000893249 037__ $$aFZJ-2021-02649
000893249 082__ $$a530
000893249 1001_ $$0P:(DE-Juel1)162464$$aRode, Sebastian$$b0$$ufzj
000893249 245__ $$aMulti-ciliated microswimmers–metachronal coordination and helical swimming
000893249 260__ $$aHeidelberg$$bSpringer$$c2021
000893249 3367_ $$2DRIVER$$aarticle
000893249 3367_ $$2DataCite$$aOutput Types/Journal article
000893249 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1623931305_32701
000893249 3367_ $$2BibTeX$$aARTICLE
000893249 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893249 3367_ $$00$$2EndNote$$aJournal Article
000893249 520__ $$aThe dynamics and motion of multi-ciliated microswimmers with a spherical body and a small number N (with 5<N<60) of cilia with length comparable to the body radius, is investigated by mesoscale hydrodynamics simulations. A metachronal wave is imposed for the cilia beat, for which the wave vector has both a longitudinal and a latitudinal component. The dynamics and motion is characterized by the swimming velocity, its variation over the beat cycle, the spinning velocity around the main body axis, as well as the parameters of the helical trajectory. Our simulation results show that the microswimmer motion strongly depends on the latitudinal wave number and the longitudinal phase lag. The microswimmers are found to swim smoothly and usually spin around their own axis. Chirality of the metachronal beat pattern generically generates helical trajectories. In most cases, the helices are thin and stretched, i.e., the helix radius is about an order of magnitude smaller than the pitch. The rotational diffusion of the microswimmer is significantly smaller than the passive rotational diffusion of the body alone, which indicates that the extended cilia contribute strongly to the hydrodynamic radius. The swimming velocity is found to increase with the cilia number N with a slightly sublinear power law, consistent with the behavior expected from the dependence of the transport velocity of planar cilia arrays on the cilia separation.
000893249 536__ $$0G:(DE-HGF)POF4-524$$a524 - Molecular and Cellular Information Processing (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000893249 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893249 7001_ $$0P:(DE-Juel1)130629$$aElgeti, Jens$$b1
000893249 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b2$$eCorresponding author
000893249 773__ $$0PERI:(DE-600)2004003-9$$a10.1140/epje/s10189-021-00078-x$$gVol. 44, no. 6, p. 76$$n6$$p76$$tThe European physical journal / E$$v44$$x1292-895X$$y2021
000893249 8564_ $$uhttps://juser.fz-juelich.de/record/893249/files/Rode2021_Article_Multi-ciliatedMicroswimmersMet.pdf$$yOpenAccess
000893249 8767_ $$d2021-06-08$$eHybrid-OA$$jDEAL
000893249 909CO $$ooai:juser.fz-juelich.de:893249$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000893249 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162464$$aForschungszentrum Jülich$$b0$$kFZJ
000893249 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130629$$aForschungszentrum Jülich$$b1$$kFZJ
000893249 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b2$$kFZJ
000893249 9130_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000893249 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000893249 9141_ $$y2021
000893249 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000893249 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000893249 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000893249 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-03
000893249 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J E : 2019$$d2021-02-03
000893249 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000893249 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-02-03$$wger
000893249 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000893249 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000893249 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893249 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-03
000893249 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000893249 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000893249 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-03$$wger
000893249 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000893249 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000893249 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000893249 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000893249 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
000893249 9201_ $$0I:(DE-Juel1)IBI-5-20200312$$kIBI-5$$lTheoretische Physik der Lebenden Materie$$x0
000893249 9801_ $$aFullTexts
000893249 980__ $$ajournal
000893249 980__ $$aVDB
000893249 980__ $$aUNRESTRICTED
000893249 980__ $$aI:(DE-Juel1)IBI-5-20200312
000893249 980__ $$aAPC
000893249 981__ $$aI:(DE-Juel1)IAS-2-20090406