001     893263
005     20230303100215.0
024 7 _ |a 10.1007/s12145-021-00631-4
|2 doi
024 7 _ |a 1865-0473
|2 ISSN
024 7 _ |a 1865-0481
|2 ISSN
024 7 _ |a 2128/28504
|2 Handle
024 7 _ |a altmetric:107490256
|2 altmetric
024 7 _ |a 34122663
|2 pmid
024 7 _ |a WOS:000658575200001
|2 WOS
037 _ _ |a FZJ-2021-02653
100 1 _ |a Betancourt, Clara
|0 P:(DE-Juel1)171435
|b 0
|e Corresponding author
245 _ _ |a Context aware benchmarking and tuning of a TByte-scale air quality database and web service
260 _ _ |a Heidelberg
|c 2021
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1632901257_6403
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We present context-aware benchmarking and performance engineering of a mature TByte-scale air quality database system which was created by the Tropospheric Ozone Assessment Report (TOAR) and contains one of the world’s largest collections of near-surface air quality measurements. A special feature of our data service https://join.fz-juelich.de is on-demand processing of several air quality metrics directly from the TOAR database. As a service that is used by more than 350 users of the international air quality research community, our web service must be easily accessible and functionally flexible, while delivering good performance. The current on-demand calculations of air quality metrics outside the database together with the necessary transfer of large volume raw data are identified as the major performance bottleneck. In this study, we therefore explore and benchmark in-database approaches for the statistical processing, which results in performance enhancements of up to 32%.
536 _ _ |a 511 - Enabling Computational- & Data-Intensive Science and Engineering (POF4-511)
|0 G:(DE-HGF)POF4-511
|c POF4-511
|f POF IV
|x 0
536 _ _ |a IntelliAQ - Artificial Intelligence for Air Quality (787576)
|0 G:(EU-Grant)787576
|c 787576
|f ERC-2017-ADG
|x 1
536 _ _ |a Deep Learning for Air Quality and Climate Forecasts (deepacf_20191101)
|0 G:(DE-Juel1)deepacf_20191101
|c deepacf_20191101
|f Deep Learning for Air Quality and Climate Forecasts
|x 2
536 _ _ |0 G:(DE-Juel-1)ESDE
|a Earth System Data Exploration (ESDE)
|c ESDE
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hagemeier, Björn
|0 P:(DE-Juel1)132123
|b 1
700 1 _ |a Schröder, Sabine
|0 P:(DE-Juel1)16212
|b 2
700 1 _ |a Schultz, Martin G.
|0 P:(DE-Juel1)6952
|b 3
773 _ _ |a 10.1007/s12145-021-00631-4
|0 PERI:(DE-600)2423990-2
|p 1597-1607
|t Earth science informatics
|v 14
|y 2021
|x 1865-0473
856 4 _ |u https://juser.fz-juelich.de/record/893263/files/Betancourt2021_Article_ContextAwareBenchmarkingAndTun.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:893263
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171435
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132123
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)16212
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)6952
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|x 0
913 0 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-512
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Data-Intensive Science and Federated Computing
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EARTH SCI INFORM : 2019
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-03
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-03
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21