000893264 001__ 893264
000893264 005__ 20210810182041.0
000893264 0247_ $$2doi$$a10.1039/D1NA00190F
000893264 0247_ $$2Handle$$a2128/28195
000893264 0247_ $$2WOS$$aWOS:000661486000001
000893264 037__ $$aFZJ-2021-02654
000893264 082__ $$a540
000893264 1001_ $$0P:(DE-Juel1)172846$$aRose, M.-A.$$b0$$eCorresponding author$$ufzj
000893264 245__ $$aLocal inhomogeneities resolved by scanning probe techniques and their impact on local 2DEG formation in oxide heterostructures
000893264 260__ $$aCambridge$$bRoyal Society of Chemistry$$c2021
000893264 3367_ $$2DRIVER$$aarticle
000893264 3367_ $$2DataCite$$aOutput Types/Journal article
000893264 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1626267536_13362
000893264 3367_ $$2BibTeX$$aARTICLE
000893264 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893264 3367_ $$00$$2EndNote$$aJournal Article
000893264 520__ $$aLateral inhomogeneities in the formation of two-dimensional electron gases (2DEG) directly influence their electronic properties. Understanding their origin is an important factor for fundamental interpretations, as well as high quality devices. Here, we studied the local formation of the buried 2DEG at LaAlO3/SrTiO3 (LAO/STO) interfaces grown on STO (100) single crystals with partial TiO2 termination, utilizing in situ conductive atomic force microscopy (c-AFM) and scattering-type scanning near-field optical microscopy (s-SNOM). Using substrates with different degrees of chemical surface termination, we can link the resulting interface chemistry to an inhomogeneous 2DEG formation. In conductivity maps recorded by c-AFM, a significant lack of conductivity is observed at topographic features, indicative of a local SrO/AlO2 interface stacking order, while significant local conductivity can be probed in regions showing TiO2/LaO interface stacking order. These results could be corroborated by s-SNOM, showing a similar contrast distribution in the optical signal which can be linked to the local electronic properties of the material. The results are further complemented by low-temperature conductivity measurements, which show an increasing residual resistance at 5 K with increasing portion of insulating SrO-terminated areas. Therefore, we can correlate the macroscopic electrical behavior of our samples to their nanoscopic structure. Using proper parameters, 2DEG mapping can be carried out without any visible alteration of sample properties, proving c-AFM and s-SNOM to be viable and destruction-free techniques for the identification of local 2DEG formation. Furthermore, applying c-AFM and s-SNOM in this manner opens the exciting prospect to link macroscopic low-temperature transport to its nanoscopic origin.
000893264 536__ $$0G:(DE-HGF)POF4-523$$a523 - Neuromorphic Computing and Network Dynamics (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000893264 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893264 7001_ $$00000-0001-7480-1247$$aBarnett, J.$$b1
000893264 7001_ $$0P:(DE-HGF)0$$aWendland, D.$$b2
000893264 7001_ $$0P:(DE-Juel1)165926$$aHensling, F. V. E.$$b3
000893264 7001_ $$0P:(DE-Juel1)172704$$aBoergers, J. M.$$b4
000893264 7001_ $$0P:(DE-Juel1)145323$$aMoors, M.$$b5
000893264 7001_ $$0P:(DE-Juel1)130620$$aDittmann, R.$$b6
000893264 7001_ $$00000-0002-0628-3043$$aTaubner, T.$$b7
000893264 7001_ $$0P:(DE-Juel1)130677$$aGunkel, F.$$b8
000893264 773__ $$0PERI:(DE-600)2942874-9$$a10.1039/D1NA00190F$$gp. 10.1039.D1NA00190F$$n14$$p10.1039.D1NA00190F$$tNanoscale advances$$v3$$x2516-0230$$y2021
000893264 8564_ $$uhttps://juser.fz-juelich.de/record/893264/files/d1na00190f.pdf$$yOpenAccess
000893264 909CO $$ooai:juser.fz-juelich.de:893264$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893264 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172846$$aForschungszentrum Jülich$$b0$$kFZJ
000893264 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172704$$aForschungszentrum Jülich$$b4$$kFZJ
000893264 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b6$$kFZJ
000893264 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130677$$aForschungszentrum Jülich$$b8$$kFZJ
000893264 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000893264 9130_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000893264 9141_ $$y2021
000893264 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-10
000893264 915__ $$0LIC:(DE-HGF)CCBYNCNV$$2V:(DE-HGF)$$aCreative Commons Attribution-NonCommercial CC BY-NC (No Version)$$bDOAJ$$d2020-09-10
000893264 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2020-09-10
000893264 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-10
000893264 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-10
000893264 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-10
000893264 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893264 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-09-10
000893264 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-10
000893264 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-10
000893264 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000893264 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000893264 980__ $$ajournal
000893264 980__ $$aVDB
000893264 980__ $$aUNRESTRICTED
000893264 980__ $$aI:(DE-Juel1)PGI-7-20110106
000893264 980__ $$aI:(DE-82)080009_20140620
000893264 9801_ $$aFullTexts