001     893264
005     20210810182041.0
024 7 _ |a 10.1039/D1NA00190F
|2 doi
024 7 _ |a 2128/28195
|2 Handle
024 7 _ |a WOS:000661486000001
|2 WOS
037 _ _ |a FZJ-2021-02654
082 _ _ |a 540
100 1 _ |a Rose, M.-A.
|0 P:(DE-Juel1)172846
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Local inhomogeneities resolved by scanning probe techniques and their impact on local 2DEG formation in oxide heterostructures
260 _ _ |a Cambridge
|c 2021
|b Royal Society of Chemistry
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1626267536_13362
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Lateral inhomogeneities in the formation of two-dimensional electron gases (2DEG) directly influence their electronic properties. Understanding their origin is an important factor for fundamental interpretations, as well as high quality devices. Here, we studied the local formation of the buried 2DEG at LaAlO3/SrTiO3 (LAO/STO) interfaces grown on STO (100) single crystals with partial TiO2 termination, utilizing in situ conductive atomic force microscopy (c-AFM) and scattering-type scanning near-field optical microscopy (s-SNOM). Using substrates with different degrees of chemical surface termination, we can link the resulting interface chemistry to an inhomogeneous 2DEG formation. In conductivity maps recorded by c-AFM, a significant lack of conductivity is observed at topographic features, indicative of a local SrO/AlO2 interface stacking order, while significant local conductivity can be probed in regions showing TiO2/LaO interface stacking order. These results could be corroborated by s-SNOM, showing a similar contrast distribution in the optical signal which can be linked to the local electronic properties of the material. The results are further complemented by low-temperature conductivity measurements, which show an increasing residual resistance at 5 K with increasing portion of insulating SrO-terminated areas. Therefore, we can correlate the macroscopic electrical behavior of our samples to their nanoscopic structure. Using proper parameters, 2DEG mapping can be carried out without any visible alteration of sample properties, proving c-AFM and s-SNOM to be viable and destruction-free techniques for the identification of local 2DEG formation. Furthermore, applying c-AFM and s-SNOM in this manner opens the exciting prospect to link macroscopic low-temperature transport to its nanoscopic origin.
536 _ _ |a 523 - Neuromorphic Computing and Network Dynamics (POF4-523)
|0 G:(DE-HGF)POF4-523
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Barnett, J.
|0 0000-0001-7480-1247
|b 1
700 1 _ |a Wendland, D.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hensling, F. V. E.
|0 P:(DE-Juel1)165926
|b 3
700 1 _ |a Boergers, J. M.
|0 P:(DE-Juel1)172704
|b 4
700 1 _ |a Moors, M.
|0 P:(DE-Juel1)145323
|b 5
700 1 _ |a Dittmann, R.
|0 P:(DE-Juel1)130620
|b 6
700 1 _ |a Taubner, T.
|0 0000-0002-0628-3043
|b 7
700 1 _ |a Gunkel, F.
|0 P:(DE-Juel1)130677
|b 8
773 _ _ |a 10.1039/D1NA00190F
|g p. 10.1039.D1NA00190F
|0 PERI:(DE-600)2942874-9
|n 14
|p 10.1039.D1NA00190F
|t Nanoscale advances
|v 3
|y 2021
|x 2516-0230
856 4 _ |u https://juser.fz-juelich.de/record/893264/files/d1na00190f.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:893264
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)172846
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172704
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130620
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130677
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|x 0
913 0 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Controlling Collective States
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-10
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC (No Version)
|0 LIC:(DE-HGF)CCBYNCNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-09-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2020-09-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-10
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-09-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-10
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21