000893310 001__ 893310
000893310 005__ 20210902140218.0
000893310 0247_ $$2doi$$a10.3389/fbioe.2021.685323
000893310 0247_ $$2Handle$$a2128/27999
000893310 0247_ $$2altmetric$$aaltmetric:108025865
000893310 0247_ $$2pmid$$a34239861
000893310 0247_ $$2WOS$$aWOS:000669856700001
000893310 037__ $$aFZJ-2021-02684
000893310 082__ $$a570
000893310 1001_ $$0P:(DE-Juel1)167400$$aBeyß, Martin$$b0$$ufzj
000893310 245__ $$aRobustifying Experimental Tracer Design for13C-Metabolic Flux Analysis
000893310 260__ $$aLausanne$$bFrontiers Media$$c2021
000893310 3367_ $$2DRIVER$$aarticle
000893310 3367_ $$2DataCite$$aOutput Types/Journal article
000893310 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1630572012_13118
000893310 3367_ $$2BibTeX$$aARTICLE
000893310 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000893310 3367_ $$00$$2EndNote$$aJournal Article
000893310 520__ $$a13C metabolic flux analysis (MFA) has become an indispensable tool to measure metabolic reaction rates (fluxes) in living organisms, having an increasingly diverse range of applications. Here, the choice of the13C labeled tracer composition makes the difference between an information-rich experiment and an experiment with only limited insights. To improve the chances for an informative labeling experiment, optimal experimental design approaches have been devised for13C-MFA, all relying on some a priori knowledge about the actual fluxes. If such prior knowledge is unavailable, e.g., for research organisms and producer strains, existing methods are left with a chicken-and-egg problem. In this work, we present a general computational method, termed robustified experimental design (R-ED), to guide the decision making about suitable tracer choices when prior knowledge about the fluxes is lacking. Instead of focusing on one mixture, optimal for specific flux values, we pursue a sampling based approach and introduce a new design criterion, which characterizes the extent to which mixtures are informative in view of all possible flux values. The R-ED workflow enables the exploration of suitable tracer mixtures and provides full flexibility to trade off information and cost metrics. The potential of the R-ED workflow is showcased by applying the approach to the industrially relevant antibiotic producer Streptomyces clavuligerus, where we suggest informative, yet economic labeling strategies.
000893310 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000893310 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000893310 7001_ $$0P:(DE-HGF)0$$aParra-Peña, Victor D.$$b1
000893310 7001_ $$0P:(DE-HGF)0$$aRamirez-Malule, Howard$$b2
000893310 7001_ $$0P:(DE-Juel1)129051$$aNöh, Katharina$$b3$$eCorresponding author$$ufzj
000893310 773__ $$0PERI:(DE-600)2719493-0$$a10.3389/fbioe.2021.685323$$gVol. 9, p. 685323$$p685323$$tFrontiers in Bioengineering and Biotechnology$$v9$$x2296-4185$$y2021
000893310 8564_ $$uhttps://juser.fz-juelich.de/record/893310/files/fbioe-09-685323.pdf$$yOpenAccess
000893310 909CO $$ooai:juser.fz-juelich.de:893310$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000893310 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167400$$aForschungszentrum Jülich$$b0$$kFZJ
000893310 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129051$$aForschungszentrum Jülich$$b3$$kFZJ
000893310 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000893310 9130_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000893310 9141_ $$y2021
000893310 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-31
000893310 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-31
000893310 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-31
000893310 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-31
000893310 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000893310 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT BIOENG BIOTECH : 2019$$d2021-01-31
000893310 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-31
000893310 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-31
000893310 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-31
000893310 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-31
000893310 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-31
000893310 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-31
000893310 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000893310 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-01-31
000893310 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-31
000893310 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-31
000893310 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-31
000893310 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-31
000893310 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-31
000893310 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000893310 980__ $$ajournal
000893310 980__ $$aVDB
000893310 980__ $$aI:(DE-Juel1)IBG-1-20101118
000893310 980__ $$aUNRESTRICTED
000893310 9801_ $$aFullTexts